AL-Azhar University Faculty of Science (Girls) Chemistry Department



## Chemical Studies, Antioxidant and Antimicrobial Activities of Pomegranate and it's possible use some food production

### A THESIS

Submitted by Alyaa Mostafa Sayed Elrqbawy

For the partial Fulfillment of Requirements for the Master Degree in Science (M.Sc.) (Organic Chemistry)

### Supervised by

### Prof. Dr.

### Nihal Omar Ghaleb Shaker

Prof. of Applied Organic Chemistry, Former DeanFaculty of Science, AL-Azhar University (GirlsBranch)

#### Prof. Dr. n Fawyy Ahamod So

Hanan Fawzy Ahamed Selim

Prof.of Bread and Pasta Food Research Head, Food Technology Research Institute, Agricultural Research Center

## CONTENTS

|                                                               | Page |
|---------------------------------------------------------------|------|
| ACKNOWLEDGEMENT                                               |      |
| CONTENTS                                                      |      |
| LIST OF TABLES                                                |      |
| LIST OF FIGURES                                               |      |
| LIST OF ABBREVIATIONS                                         |      |
| SUMMARY                                                       |      |
| <b>1. GENERAL INTRODUCTION</b>                                | 1    |
| 1.1Celiac disease                                             | 6    |
| 2. REVIEW of LITERATURE                                       | 9    |
| 2.1. Pomegranate ( Punica granatum L.) Properties             | 9    |
| 2.2. Chemical composition of pomegranate peel powder          | 13   |
| 2.3.Photochemicalstudies                                      | 25   |
| 2.4. Phenolic compounds                                       | 32   |
| 2.5.Antioxidant activity of phenolic compounds in pomegranate | 44   |
| 2.6. Properties of pomegranate                                | 65   |
| 2.7.Functional Properties of pomegranate                      | 66   |

| 2.7.1. Medicinal effects of pomegranate                              | 67 |
|----------------------------------------------------------------------|----|
| 2.7.1.1 Chronic inflammations                                        | 69 |
| 2.7.1.2 Cancer                                                       | 71 |
| 2.7.1.3. Antimicrobial activity                                      | 73 |
| 2.7.1.4. Anti-inflammatory Activity                                  | 73 |
| 2.7.1.5 Celiac sensitivity                                           | 74 |
| 2.8.Application of pomegranate in food industry                      | 78 |
| 2.8.1.Bakery products                                                | 78 |
| 2.8.2.Fermented Juice                                                | 79 |
| 2.8.2.1.Health benefits of fermented foods                           | 81 |
| 3. MATERIALS AND METHODS                                             | 82 |
| 3.1.1.Plant materials                                                | 82 |
| 3.1.2 Preparation of pomegranate peels powder                        | 82 |
| 3.1.3. Preparation of pomegranate juice from seeds                   | 83 |
| 3.1.4. Chemicals                                                     | 83 |
| 3.2. METHODS                                                         | 84 |
| 3.2.1. Chemical analyses of pomegranate peel powder, seeds and juice |    |
| Determination of moisture content                                    | 84 |

| Determination of crude proteins                                                                                               | 84 |
|-------------------------------------------------------------------------------------------------------------------------------|----|
| Determination of ash content                                                                                                  | 85 |
| Determination of crude fiber                                                                                                  | 86 |
| Determination of Crude fat content                                                                                            | 86 |
| Determination of total carbohydrates                                                                                          | 86 |
| Determination of minerals content                                                                                             | 87 |
| • Determination of Fatty acids (F.A.) composition by<br>Gas Liquid Chromatography (GLC)                                       | 87 |
| 3.2.2. Determination of total phenolic content (TP) of pomegranate juice, seeds and peel powder extract                       | 88 |
| Preparations of peel powder extract                                                                                           | 88 |
| <i>3.2.3.</i> Determination of total flavonoids content (TF) of pomegranate juice, seeds and peel powder extract              | 89 |
| 3.2.4. Fractionation and identification of phenolic compounds by High Performance Liquid Chroma-tography(HPLC)                | 90 |
| 3.2.5.1. Fractionation and identification of Vitamins A, E,<br>D and K by High Performance Liquid Chroma-tography<br>(HPLC)   |    |
| 3.2.5.2.Fractionation and identification of Ascrobic acid<br>(Vitamin C) by High Performance Liquid Chromatography<br>(HPLC). | 92 |

| 3.2.5.3. Fractionation and identification of Flavonoid compounds by High Performance Liquid Chromatography (HPLC) | 92  |
|-------------------------------------------------------------------------------------------------------------------|-----|
| 3.2.5.4. Determination of antioxidant activity for pomegranate juice, seeds and peel powder extracts              | 93  |
| 3.2.5.5. Functional properties of flour                                                                           | 94  |
| • Water & oil absorption capacity (WAC & OAC)                                                                     | 94  |
| • Bulk density                                                                                                    | 95  |
| Least gelation concentration                                                                                      | 95  |
| Emulsion activity                                                                                                 | 96  |
| 3.2.5.6. Preparation of biscuits                                                                                  |     |
| 3.2.5.7.Physical properties of developed biscuits                                                                 |     |
| • Weight, diameter, thickness and spread ratio                                                                    | 97  |
| Texture analysis                                                                                                  | 98  |
| Sensory analysis of developed biscuits                                                                            | 98  |
| Statistical analysis                                                                                              | 99  |
| Microorganisms                                                                                                    | 99  |
| Methods of Extraction                                                                                             |     |
| 3.2.5.8. Pathogenic strains                                                                                       | 100 |
| • Bacteria                                                                                                        | 100 |

| • Fungi                                                                                                           | 101 |
|-------------------------------------------------------------------------------------------------------------------|-----|
| • Yeast                                                                                                           | 101 |
| 3.2.5.9.1. Assessment of antimicrobial activity of water and ethanol extracts.                                    | 101 |
| 3.2.5.9.2. Preparation of starter culture:                                                                        | 101 |
| 3.2.5.9.3. Preparation of probiotic pomegranate beverage                                                          | 102 |
| 3.2.5.9.4. Microbial analysis of probiotic pomegranate beverage                                                   | 103 |
| 3.2.5.9.5. Physico-chemical analysis of probiotic pomegranate beverage                                            | 103 |
| <ul> <li>Determination of total soluble solids (TSS), total<br/>acidity (TA) and pH values</li> </ul>             | 103 |
| <ul> <li>Determination of sugars</li> </ul>                                                                       | 104 |
| <ul> <li>Determination ascorbic acid (vitamin C)</li> </ul>                                                       | 104 |
| Color determination                                                                                               | 104 |
| 4. RESULTS AND DISCUSSION                                                                                         | 105 |
| 4.1 The chemical composition of two varietiespomegranate<br>Manfaloty and Wonderful peels powder, juice and seeds | 106 |
| 4.2.Total phenolic content                                                                                        | 108 |
| 4.3.Total flavonoids content                                                                                      | 109 |
| 4.4. Antioxidants activities of pomegranate Manfaloty peel powder, Wonderful peel powder, pomegranate juice       | 111 |

| and pomegranate seeds for aqueous and solvent extracts     |     |
|------------------------------------------------------------|-----|
| 4.5. Quantitative and Qualitative analysis of polyphenolic | 114 |
| compounds by High Performance Liquid chromatography        |     |
| (HPLC)                                                     |     |
| 4.6. Quantitative and Qualitative Analysis of flavonoids   | 122 |
| 4.7.Vitaminscontent of the two varieties of pomegranate    | 130 |
| peel powder, pomegranate juice and pomegranate seeds       |     |
| 4.8.Sugar contents percentof pomegranate Manfalutypeel     | 144 |
| powder, Wonderfulpeel powder, pomegranate juice and        |     |
| pomegranate seed                                           |     |
| 4.9. Minerals content of pomegranate peel powder, juice    | 147 |
| and seeds                                                  |     |
| 4.10.Fatty acids profile of produced seeds oil             | 148 |
| 4.11.Physico- chemical properties of potato flour and      |     |
| pomegranate peel powder                                    |     |
| 4.12. Chemical composition of biscuits                     | 154 |
| 4.13.The total phenolics and Total Flavonoids content      | 156 |
| &Antioxidant Activity of biscuits                          |     |
| 4.13.1. Total polyphenolics content                        | 156 |
| 4.13.2.Minerals content of biscuits                        | 157 |
| 4.13.3. Physical Properties of (Biscuits)                  | 161 |
| 4.13.4. Sensory evalution of biscuits                      | 164 |
|                                                            |     |

| 4.13.5. Antimicrobial activity of pomegranate peels powder | 167 |
|------------------------------------------------------------|-----|
| and Pomegranate juice                                      |     |
|                                                            | 174 |
| 4.13.6. Microbiological analysis of biscuits               | 174 |
| 4.14.1. Physico-chemical characteristics of probiotic      | 174 |
| pomegranate beverage                                       |     |
| 4.14.2. Color characteristics of probiotic pomegranate     | 177 |
| beverage                                                   |     |
| 4.14.3. Effect of storage on viability of probiotics       |     |
| 4.14.4. Microbial analysis of probiotic pomegranate        |     |
| beverage                                                   |     |
| 5. CONCLUSIONS                                             |     |
| 6. REFERENCES                                              |     |
| 7. ARABIC SUMMARY                                          | 1   |

## LIST OF TABLES

|           |                                                                                                                                                                                                           | Page  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table (1) | Structures of polyphenolic compounds found<br>in pomegranate peel and other<br>parts(Punicagranatum)                                                                                                      | 42-44 |
| Table (2) | The formula for biscuits                                                                                                                                                                                  | 96    |
| Table (3) | Percentage content of different parts of pomegranate fruit.                                                                                                                                               | 105   |
| Table (4) | Mean values of moisture, protein, fiber, ash,<br>fat, and carbohydates pomegranate peel<br>powder for two varieties (Manfaloty and<br>Wonderful) peel powder, pomegranate juice<br>and pomegranate seeds. | 107   |
| Table (5) | The total phenolic content (mg Gallic<br>acid/100gm) of pomegranate (Manfaloty and<br>Wonderful) peel powder, pomegranate juice<br>and pomegranate seeds by water and solvent<br>extracts                 | 109   |
| Table (6) | The total flavonoid contents (mg Quercetin /100gm) for the two varieties of pomegranate Manfaloty and Wonderful peel powder, pomegranate seeds and pomegranate juice with water and solvent extracts.     | 110   |

| Table (7)  | Antioxidants activity of pomegranate<br>Manfaloty peel powder, Wonderful peel<br>powder, pomegranate juice and pomegranate<br>seeds for water and solvent extracts. | 113 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table (8)  | Composition percent of polyphenolic<br>compounds of Manfaloty peel powder,<br>Wonderful peel powder pomegranate                                                     | 115 |
| Table (9)  | Composition percent of phenolic compounds<br>for pomegranate juice and pomegranate<br>seeds.                                                                        | 117 |
| Table (10) | Composition offlavonoidcompounds for<br>pomegranate Manfaloty peel powder,<br>Wonderful peel powder, juice and<br>p0megranate seeds (mg/100g)                       | 123 |
| Table (11) | Identification of Vitamins content (mg/100g) of the studied pomegranate parts.                                                                                      | 131 |
| Table (12) | The Sugar contents percentof the studied pomegranate parts.                                                                                                         | 144 |
| Table (13) | Minerals content of the studied pomegranate parts (mg/Kg).                                                                                                          | 148 |
| Table (14) | Percentage fatty acids composition (g fatty acids/ 100g sample ) of the seeds.                                                                                      | 150 |
| Table (15) | physical properties of potato flour and pomegranate flour.                                                                                                          | 153 |

| Table (16) | Chemical composition of raw materials and biscuits.                                                                           | 155 |
|------------|-------------------------------------------------------------------------------------------------------------------------------|-----|
| Table (17) | Total phenolic contents and antioxidant<br>activity of pomegranatepeel and peel powder<br>supplemented biscuits.              | 157 |
| Table (18) | Mineral composition of biscuits.                                                                                              | 160 |
| Table (19) | Physical properties of biscuits. Potato flour pomegranate peels powder.                                                       | 163 |
| Table (20) | Sensory evaluation of biscuits.                                                                                               | 165 |
| Table (21) | Anti-bacterial activity (mm) of water and<br>ethanol extracts of <i>Punica granatum</i> peel<br>powder and pomegranate juice: | 169 |
| Table (22) | Chemical characteristics of probiotic pome-<br>granate beverage                                                               | 175 |
| Table (23) | Color characteristics of probiotic pomegranate beverage                                                                       | 177 |
| Table (24) | Effect of storage during 4 weeks on viability<br>of probiotic cultures in probiotic pomeg-<br>ranate beverage.                | 179 |
| Table (25) | Microbiological analysis of probiotic pomegranate beverage during storage period.                                             | 181 |

## LIST OF FIGIRES

|          |                                                                                                                                                         | Page |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Fig.(1)  | Structures of flavonoids, phenolic acids and tannins.                                                                                                   | 5    |
| Fig.(2)  | Wheat gliadin protein region - amino acids43-49- showing high proline presence                                                                          | 8    |
| Fig.(3)  | A: the pomegranate fruit (A). B: pomegranate<br>juice; C: section of pomegranate; D:<br>pomegranate peel; E: pomegranate arils;<br>F:pomegranate seeds. | 11   |
| Fig.(4)  | The chemical structure of hydrolysable tannis.                                                                                                          | 13   |
| Fig.(5)  | The structures of $\alpha$ - Linoleic acid and Punicic acid.                                                                                            | 22   |
| Fig.(6)  | Molecular structures of main acid contained<br>in oil fraction.                                                                                         | 23   |
| Fig.(7)  | The constitution of arils.                                                                                                                              | 26   |
| Fig.(8)  | The constitution of the seed cover.                                                                                                                     | 27   |
| Fig.(9)  | Some acids in pomegranate.                                                                                                                              | 28   |
| Fig.(10) | The main group of antioxidant phyto-<br>chemicals.                                                                                                      | 29   |

| Fig.(11)Classes of polyphenols.33Fig.(12)General structure of the important phenolic<br>compounds of pomegranate peel (A)<br>Anthocyanin (B) Catechins(C) Punicalin<br>(D)Elagicacid(E)Punicalagin.40Fig.(13)(A) Principal anthocyanins present in<br>pomegranate juice. 1:cyanidin-3-O-glucoside;<br>2:cyanidin-3,5-di-O-glucoside; 3: delphinidin-<br>3,5-di-O-glucoside; 4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.53Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67Fig.(18)Standard curve of Gallic acid.89 | $\mathbf{D}^{*}$ (1.1) |                                               | 22 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------|----|
| Compounds of pomegranate peel (A)<br>Anthocyanin (B) Catechins(C) Punicalin<br>(D)Elagicacid(E)Punicalagin.Fig.(13)(A) Principal anthocyanins present in<br>pomegranate juice. 1:cyanidin-3-O-glucoside;<br>2:cyanidin-3,5-di-O-glucoside; 3: delphinidin-<br>3-O-glucoside;4:delphindin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.53Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                       | Fig.(11)               | Classes of polyphenols.                       | 33 |
| Anthocyanin (B) Catechins(C) Punicalin<br>(D)Elagicacid(E)Punicalagin.Fig.(13)(A) Principal anthocyanins present in<br>pomegranate juice. 1:cyanidin-3-O-glucoside;<br>2:cyanidin-3,5-di-O-glucoside; 3: delphinidin-<br>3-O-glucoside;4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.53Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                         | Fig.(12)               | General structure of the important phenolic   | 40 |
| (D)Elagicacid(E)Punicalagin.Fig.(13)(A) Principal anthocyanins present in<br>pomegranate juice. 1:cyanidin-3-O-glucoside;<br>2:cyanidin-3,5-di-O-glucoside; 3: delphinidin-<br>3-O-glucoside;4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                     |                        | compounds of pomegranate peel (A)             |    |
| Fig.(13)(A) Principal anthocyanins present in<br>pomegranate juice. 1:cyanidin-3-O-glucoside;<br>2:cyanidin-3,5-di-O-glucoside; 3: delphinidin-<br>3-O-glucoside;4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.53Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                               |                        | Anthocyanin (B) Catechins(C) Punicalin        |    |
| pomegranate juice.1:cyanidin-3-O-glucoside;<br>2:cyanidin-3,5-di-O-glucoside;<br>3: delphinidin-<br>3-O-glucoside;4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                |                        | (D)Elagicacid(E)Punicalagin.                  |    |
| 2:cyanidin-3,5-di-O-glucoside; 3: delphinidin-<br>3-O-glucoside;4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                  | Fig.(13)               |                                               | 41 |
| 3-O-glucoside;4:delphinidin-3,5-di-O-glucoside;<br>5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).Fig.(17)Principal functional and medicinal effects of<br>pomegranate.                                                                                                                                                                                                                                                                                                                                            |                        |                                               |    |
| 5: pelargonidin-3-O-glucoside; 6: pelargonidin-<br>3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).Fig.(17)Principal functional and medicinal effects of<br>pomegranate.                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                               |    |
| 3,5-di-O-glucoside. (B) Principal phenolic<br>acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds<br>-<br>punicalagin (1), 2,3-(s)-hexahydroxy<br>-<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                               |    |
| acids present in pomegranate juice: 1: p-<br>coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                               |    |
| coumaric acid; 2: chlorogenic acid; 3:<br>caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 3,5-di-O-glucoside. (B) Principal phenolic    |    |
| caffeic acid; 4: EA; 5: gallic acid.Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | acids present in pomegranate juice: 1: p-     |    |
| Fig.(14)Structural features of flavonoids with a high<br>radical scavenging activity.53Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | coumaric acid; 2: chlorogenic acid; 3:        |    |
| Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | caffeic acid; 4: EA; 5: gallic acid.          |    |
| Fig.(15)Mechanism of the radical scavenging<br>activity of flavono.53Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fig.(14)               | Structural features of flavonoids with a high | 53 |
| activity of flavono.64Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | radical scavenging activity.                  |    |
| Fig.(16)Structure of the isolated compounds -<br>punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).64Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fig.(15)               | Mechanism of the radical scavenging           | 53 |
| punicalagin (1), 2,3-(s)-hexahydroxy -<br>diphenoyl-D-glucose (2), punicalin (3).Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | activity of flavono.                          |    |
| diphenoyl-D-glucose (2), punicalin (3).Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fig.(16)               | Structure of the isolated compounds -         | 64 |
| Fig.(17)Principal functional and medicinal effects of<br>pomegranate.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | punicalagin (1), 2,3-(s)-hexahydroxy -        |    |
| pomegranate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | diphenoyl-D-glucose (2), punicalin (3).       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fig.(17)               | Principal functional and medicinal effects of | 67 |
| Fig.(18)Standard curve of Gallic acid.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | pomegranate.                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fig.(18)               | Standard curve of Gallic acid.                | 89 |

| Fig.(19) | Standard curve of Quercetin.                                                         | 90      |
|----------|--------------------------------------------------------------------------------------|---------|
| Fig.(20) | The chemical structure of 2, 2 Diphenyl-1-<br>Picrylhydrazyl (DPPH) radical.         | 94      |
| Fig.(21) | Reaction of DPPH radical with an antioxidant.                                        | 94      |
| Fig.(22) | the structure of polyphenolic compounds of peel powder, seeds and juice pomegranate. | 116     |
| Fig.(23) | High Performance Liquid Chromatography<br>of Manfaloty peel powder pomegranate.      | 118     |
| Fig.(24) | High Performance Liquid Chroma-<br>tography of Wonderful peel powder<br>pomegranate. | 119     |
| Fig.(25) | High Performance Liquid Chromatography of pomegranate seeds.                         | 120     |
| Fig.(26) | High Performance Liquid Chromatography of pomegranate juice.                         | 121     |
| Fig.(27) | Flavonoids of peel powder, seeds and juice pomegranate.                              | 124-125 |
| Fig.(28) | High Performance Liquid Chromatography of pomegranate Manfaluty peel powder.         | 126     |
| Fig.(29) | High Perfuming liquid Chromatography of pomegranate Wonderful peel powder.           | 127     |
| Fig.(30) | High Perfuming liquid Chromatography of pomegranate seeds.                           | 128     |

| Fig.(31) | High Perfuming liquid Chromatography of Flavonoids of pomegranate juice. | 129 |
|----------|--------------------------------------------------------------------------|-----|
|          |                                                                          |     |
| Fig.(32) | Vitamin C of Manfaloty peel powder                                       | 132 |
|          | pomegranate.                                                             |     |
| Fig.(33) | Vitamin C of Wonderful peel powder                                       | 132 |
|          | pomegranate.                                                             |     |
| Fig.(34) | Vitamin C of pomegranate seeds.                                          | 133 |
| Fig.(35) | Vitamin C of pomegranate juice.                                          | 133 |
| Fig.(36) | Vitamin A of Manfaluty peel powder pome-                                 | 134 |
|          | granate.                                                                 |     |
| Fig.(37) | Vitamin A of Wonderful peel powder of                                    | 134 |
|          | pomegranate.                                                             |     |
| Fig.(38) | Vitamin A of pomegranate seeds.                                          | 135 |
| Fig.(39) | Vitamin A of pomegranate juice.                                          | 135 |
| Fig.(40) | Vitamin D of Manfaloty peel powder                                       | 136 |
|          | pomegranate.                                                             |     |
| Fig.(41) | Vitamin D of Wonderful powder pomegranate.                               | 136 |
| Fig.(42) | Vitamin D of pomegranate seeds.                                          | 137 |
| Fig.(43) | Vitamin D of pomegranate juice.                                          | 137 |
| Fig.(44) | Vitamin K of Manfaluty peel powder pome-                                 | 138 |
|          | granate.                                                                 |     |
|          |                                                                          |     |

| Fig.(45) | Vitamin K of Wonderful peel powder pome-<br>granate.            | 138 |
|----------|-----------------------------------------------------------------|-----|
| Fig.(46) | Vitamin K of pomegranate seeds.                                 | 139 |
| Fig.(47) | Vitamin K of pomegranate juice.                                 | 139 |
| Fig.(48) | Vitamin E of Manfaloty peel powder pome-<br>granate.            | 140 |
| Fig.(49) | Vitamin E of Wonderful peel powder pome-<br>granate.            | 140 |
| Fig.(50) | Vitamin E of pomegranate seeds.                                 | 141 |
| Fig.(51) | Vitamin E of pomegranate juice.                                 | 141 |
| Fig.(52) | vitamin B of Manfaloty peel powder pome-<br>granate.            | 142 |
| Fig.(53) | Vitamin B of Wonderful peel powder pome-<br>granate.            | 142 |
| Fig.(54) | Vitamin B of pomegranate seeds.                                 | 143 |
| Fig.(55) | Vitamin B of pomegranate juice.                                 | 143 |
| Fig.(56) | Sugar of Manfaloty peel powder.                                 | 145 |
| Fig.(57) | Sugar of Wonderful peel powder.                                 | 145 |
| Fig.(58) | Sugar of pomegranate seeds.                                     | 146 |
| Fig.(59) | Sugar of pomegranate juice.                                     | 146 |
| Fig.(60) | Gas- liquid chromatography of fatty acids of Pomegranate seeds. | 151 |

| Fig.(61)  | Biscuits from potato flour and pomegranate peel powder.               | 166 |
|-----------|-----------------------------------------------------------------------|-----|
| Fig.(62)  | Antimicrobial activity of ethanol extract of pomegranate peel powder. | 170 |
| Fig.(63)  | Antimicrobial activity of water extract of pomegranate peel powder.   | 171 |
| Fig.(64)  | Antimicrobial activity of ethanol extract of pomegranate juice.       | 172 |
| Fig.(65)  | Antimicrobial activity of water extract of pomegranate juice.         | 173 |
| Fig. (66) | Probiotic pomegranate beverage.                                       | 178 |

### **SUMMARY**

Pomegranate (Punica granatum, Punicaceae) is known to have considerable health-promoting properties with antimicrobial, antiviral, anticancer and antioxidant.

The objective of this study wasthe evaluation of two varieties pomegranate peels powder (Manfaloty and Wonderful), seeds and juice.

Extraction of phenolic compounds from peel powder, seeds and juice as well as fractionation and identification of these phenolic compounds, Antioxidant activity were also studied.

Biscuits of pomegranate husk powder and potato flour wera perepared.

The peel powder application in food to increase nutration value specification potatoes flour by 10%, 15%, 20% peel powder in biscuits.

Probiotic (Fermented juice of pomegranate juice and lactic acid) was prepared and assessed the qualities and microbiological examination as well as sensory evaluation of the product.

I

The chemical composition of fresh pomegranate (Punica granatum L.) (Peels powder, seeds and juice).

Thechemicalcomposition of the two varieties(pomegranate peels powder Manfaloty and Wonderful) had a different chemical constituents.

 Total phenolics, total flavonoids contents and antioxidant activity of the two varieties of pomegranate peel powder, seeds and juice extract.

Total phenolswere identified for both water and organic solvent extract (hexane - acetone -methanol- ethanol). Organic extracts of pomegranate peel powder (Manfaloty and Wonderful) were the highest phenolics content (3075.6 and 2375.6 mg/100g), respectively. The highest total phenolic content in Manfaloty peel and Wonderful peel powder in ethanol then water extracts (3075.6 and 355.6 mg/100g) respectively.

The highest total flavonoids content was found in Manfuloty peel in acetone extract (131.79mg/100gm) compared with other fractionation (Wonderful pomegranatejuice and pomegranate seed).

Antioxidants activities of pomegranate Manfaloty peel powder extract by water had higher value (91.82%) than

Ш

Wonderful peel powder (62.43%), pomegranate seeds (34.26%) and pomegranate juice (31.48%).

• Quantitative and Qualitative analysis of polyphenolic compounds by High - Performance Liquid Chromatography (HPLC):

The two varieties pomegranate contains high phenolic compounds. The composition of poly phenolic compounds of Manfaloty peel powder and Wonderful peel powder pomegranate, which fractionated into 20 different were components, byHPLCshowed that pyrogallol had the highest composition for Manfaluty peel powder (2.609%), while iso-ferulic acid for Manfaluty peel powder showed the lowest value (0.002%). The highest composition for Wonderful is Pyrogallol(2.231%) and the lowerst value Alpha-coumaricacid (0.002%). It is clear that pomegranate seeds and juice had the highest composition of Pyrogallol (0.253%), (0.144%) and the lowest composition was of Cinnamic acid (0.001 %),

## • Flavonoid compounds analysis by High performance liquid Chromatography (HPLC).

The flavonid compounds of the varieties of pomegranate (Manfuloty and Wonderful) peel powder were higher than pomegranate seeds and pomegranate juice which were fractionated into 16 different components, by HPLC. The most common flavonoid compounds were apig.7-oneohespiroside(69.995 mg/100g) in Mafaloty peel powder and Hesperidine and *Hespirtin* (152.995mg/100g) for Wonderful. While flavonoid compounds of seeds were (17.219mg/100g) *Hespirti* and of juice was Kaemp.3-(2-p-comaroyl) glucose (5.333mg/100g).

# • Vitamincontents by High Performance Liquid Chromatography (HPLC)

Was the highest Vitamin C in Manfaluty peel powder compared Wonderful (37.025 mg/100g) with peel powder(23.117mg/100g), juice (11.04 mg/100g) and seeds (3.103 mg/100g).Pomegranate juice had the highest vitamin K (18.56 mg/100g) while Vitamin K of Manfaloty pomegranate peel powder, seeds, Wonderful peel powder were (3.032,2.987and 0.248mg/100g), respectively. Vitamin A of pomegranate peel Wonderful) powder (Manfaloty and were (0.593.0.537)mg/100g)respectively. But Vitamin A of pomegranate juice and seeds were 0.377 and 0.070 mg/100, respectively.

# • Sugar contents by High Performance Liquidchromatography (HPLC).

The Manfaloty peel powder had the highest content of sucrose (26.812%) followed by Wonderful peel powder

IV

(13.393%). seedshad the highest content of fructose (14.403%) followed by juice 7.320%.

### • Fatty acid content.

Fractionation of oil by Gas Liquid Chromatgravy (GLC) revealed that Oleic acid (18:1) was the predominant fatty acids for Pomegranate seeds (83.240 %)of Punicic acid (9, 11, 13, C18:3), (83.483%). In addition, the PSO contained a considerable contents of Palmitic (18:0), Stearic (18:0) and Behenic (22:0) fatty acids (2.360, 1.777 and 2.80), respectively.

### Application of pomegranate peels and juice:

The different percent pomegranate peels powder (0%, 10%, 15% and 20%).in biscuits.

From the previous results, it can be concluded that the pee.l. powder contain highest nutrition value and can be applied by 10%, 15%, 20% peel powder in biscuits. to increase nutrition value specification of potatoes flour.

### • The chemical properties of biscuits:

The chemical composition of biscuits with potato flour of supplementation different percent (T1 (10%), T2 (15%) and T3 (20%) of pomegranatepeel powder was carried out. The fiber content increased by increase percent addition of pomegranate peel powder from T0, T1,T2 and T3 biscuit increased from  $1.04\pm0.04\%$ , to $1.08\pm0.01\%$ ,  $1.37\pm0.32\%$  and  $2.43\pm0.301\%$  respectively. And the highest ash for T3 (20%) Pomegranate peel powder fortification follwed by T2 (15%) and T1 (10%). The increase in ash content is duo to higher ash content in pomegranate peel powder.

### The total phenolic, Total Flavornoid and Antioxidant Activitycontent of biscuits:

The total phenolic contents and antioxidant activity of pomegranate peel and peel powder supplemented biscuits increased by the increase amount of pomegranate peel powder from 0%, to 10%, 15% and 20 %. Total phenolic contents of biscuits were increased from 112.50 $\pm$ 1.0,to 230.38 $\pm$ 1.0<sup>o</sup> 253.15 $\pm$ 1.01and 320.51 $\pm$ 0.99 mg/100g, flavonoid from, to 63.30 $\pm$ 1.0, to 75.90 $\pm$ 1.1, 80.64 $\pm$ 1.03 and91.39 $\pm$ 0.83mg/100g expressing a linear trend with gradual incrementsof pomegranate peel powder concentration in potato flour i.e. from0%, to 10%, 15% and 20%. And Antioxidant activity increased from 9.72 $\pm$ 0.53, 54.39 $\pm$ 0.72, 65.77 $\pm$ 0.58 and 87.40 $\pm$ 0.61 %, respectively.

#### Sensory evolution of biscuits:

Sensory development was not significantly acceptable among all sample compared to control biscuits; the results showed general acceptance of biscuit samples. All sensory grades of overall appearance, color and overall acceptability were not

VI

important among all biscuits and analysis of texture contrast revealed that there was no significant effect on biscuit texture when peel powder was added to potato flour. Pomegranate (20%, 10%, and 15%).Flavor characteristic analysisrevealed a change in biscuit flavor due to the addition of pomegranate peel powder. The addition of pomegranate peel powder at 20% level did not add any undesirable sensory response and the product remained acceptable.

### • Effect of storage on biscuits:

During 1 year and 18 month of storage no growth of microorganism was not detected (total bacterial count, Yeasts and molds counts) this is due to the presence of high amount of phenolic compounds and antioxidants, After 24 months the growth appeared the total count  $2.2 \times 10^2$  CFU, yeast and mould  $1 \times 10^2$  CFU without any growth of Salmonella, Colform, Bacillus cereus, Escherichia coli, and Staphylococcus.

### • Preparation of probiotic pomegranate beverage:

Total phenols and flavnoids in probiotic juice were the highest amounts (203.30, 110) than control (135.4, 35.24), respectively. Probiotic juice had highest antioxidant activity than control (85.69, 59.12) after fermentation process.

#### • Effect of storage on viability of probiotics:

It was observed that the probiotic cultures were capable of surviving in the product at  $4^{\circ}$ C for 28 days.

### • Microbial analysis of probiotic pomegranate beverage:

There was no yeast/mold colonies detected in sample (B) stored at 4°C. On the other hand, no colony of coli-form bacteria was detected in both the samples over the entire storage period.

### • The effect of storage on the viability of probiotics

It was observed that probiotics were able to survive in the product at 4°C for 28 days. Yeast mold colonies were not detected in the sample stored at 4° C. Other, colony was not detected in both samples during the entire storage period. Yeast and mold count were observed in the sample (A) stored at room temperature and in probiotics based products; the growth of microbes other than the added culture is considered to be undesirable. During the second week, the probiotic culture count reduced significantly due to the stressful conditions of low pH in sample (A) due to lactic acid accumulation.