

Effect of Some Nanotechnology Materials in Inducing Tomato Productivity Under Temperature Stress

By

Tamer Wageh Nagib

M. Sc. Agric. Sci. (Vegetable Crops), 2013

Thesis

Doctor of Philosophy In Agricultural Sciences (Vegetable Crops)

Supervised by

Prof. Dr. Abdel-Razek A. Midan

Professor of Vegetable Crops, Fac. of Agric., Minufiya Univ.

Prof. Dr. Mervat E. Sorial

Professor of Plant Physiology, Fac. of Agric., Minufiya Univ. **Prof. Dr. Sally A. Midan** Professor of Vegetable Crops, Fac. of Agric., Minufiya Univ.

Prof. Dr. Alfons G. Zakher

Professor of Vegetable Crops, Horticulture Res. Inst.

CONTENTS

		Page
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
2.1	Vegetative Growth and growth analyses	4
	Effect of cold stress	4
	Effects of nanobiostimulators ₁ (sea weeds, salicylic acid and proline)	7
	Effects of nanobiostimulators ₂ (CPPU, Brassinolide, proline and	9
	amino oligosaccharin)	
	Effect of Jasmonic acid	11
	Effect of silicon	11
2.2	Biochemical parameters	12
	Effect of cold stress	12
	Effect of nanobiostimulators ₁ (sea weeds, salicylic acid and proline)	16
	Effect of nanobiostimulators ₂ (CPPU, Brassinolide, proline and	18
	amino oligosaccharin)	
	Effect of Jasmonic acid	21
	Effect of silicon	23
2.3	Yield and its components	24
	Effect of cold stress	24
	Effect of nanobiostimulators ₁ (sea weeds, salicylic acid and proline)	25
	Effect of nanobiostimulators ₂ (CPPU, Brassinolide, proline and	27
	amino oligosaccharin)	
	Effect of jasmonic acid	28
	Effect of silicon	28
3	MATERIALS AND METHODS	30
	Treatments	33
	Sampling	34
	Data recorded	34
3.1	Vegetative growth and Growth analysis parameters	34
	Evaluation of Chilling Injury index (CI)	37
3.2	Biochemical parameters	37
	Determination of membrane leakage (ML)	37
	Chlorophyll content	38
	Determination of Antioxidant Enzymes Activity	38
	Poly Phenol Oxidase enzyme activity (PPO)	38
	Peroxidase enzyme activity (PO)	38
	Catalase enzyme activity (CAT)	39
	Determination of proline content	39
	Total Sugars and phenols determination	39
	Total sugars (TS)	40

	Total phenols (TP)	40
	Nitrogen content	41
	Phosphorus content	41
	Potassium content	41
	The total crud protein	41
3.4	Yield and its components	41
	Flowering	41
	Fruit yield	42
	Fruit quality	42
	Statistical analysis	43
4	RESULTS AND DISCUSSION	44
	Vegetative growth parameters	44
	Growth analysis parameters	53
	Evaluation of Chilling Injury index (CI)	58
	Biochemical Parameter	60
	Membrane leakage (ML)	60
	Chlorophyll contents	61
	Antioxidant Enzymes	66
	Proline content	71
	Total sugars and Total phenols	76
	NPk and Protein contents	79
	Yield and its components	84
5	SUMMARY AND CONCLUTION	94
6	REFERENCES	97
7	ARABIC SUMMARY	

LIST OF TABLES

No.of Table	Particulars	Page
1	The weekly average temperature, soil temperature and relative humidity in Menoufia Governorate during 2016/2017 and 2017/2018 winter seasons.	31
2	Soil physical and chemical characteristics of the excremental site.	32
3	Effect of some nanobiostimulators in vegetative growth of tomato plants grown under low temperature condition (season1)	45
4	Effect of some nanobiostimulators in vegetative growth of tomato plants grown under low temperature condition (season2)	46
5	Effect of some nanobiostimulators in vegetative growth of tomato plants grown under low temperature condition (season1)	51
6	Effect of some nanobiostimulators in vegetative growth of tomato plants grown under low temperature condition (season2)	52
7	Effect of some nanobiostimulators in some growth analyses parameters of tomato plants grown under low temperature condition (season1)	54
8	Effect of some nanobiostimulators in some growth analyses parameters of tomato plants grown under low temperature condition (season2)	55
9	Effect of some nanobiostimulators on chilling injury (CI) percentage of tomato plants grown under low temperature condition (season1: 2016/2017 and season2: 2017/2018).	59
10	Effect of some nanobiostimulators in membrane leakage (ML), chlorophyll a and chlorophyll b of tomato leaves grown under low temperature condition (season1)	62
11	Effect of some nanobiostimulators in membrane leakage (ML), chlorophyll a and chlorophyll b of tomato leaves grown under low temperature condition (season2)	63
12	Effect of some nanobiostimulators in poly phenol oxidase (PPO), peroxidase (PO) and catalase (CAT) enzymes activities of tomato leaves grown under low temperature condition (season1)	68
13	Effect of some nanobiostimulators in poly phenol oxidase (PPO), peroxidase (PO) and catalase (CAT) enzymes activities of tomato leaves grown under low temperature condition (season2)	69
14	Effect of some nanobiostimulators on proline, total sugars (TS) and total phenols (TPh) in tomato leaves (season 1).	72
15	Effect of some nanobiostimulators on proline, total sugars (TS) and total phenols (TPh) in tomato leaves (season 2).	73
16	Effect of some nanobiostimulators on (N, P and K) concentration and protein in tomato leaves under low temperature condition (season1)	81
17	Effect of some nanobiostimulators on (N, P and K) concentration and protein in tomato leaves under low temperature condition (season2)	82
18	Effect of some nanobiostimulators in number of flowers, number of fruits and fruit set on tomato plants grown under low temperature condition (season1)	85
19	Effect of some nanobiostimulators in number of flowers, number of fruits and fruit set on tomato plants grown under low temperature condition (season2)	86
20	Effect of some nanobiostimulators in tomato yield and its components grown under low temperature condition (season1)	87
21	Effect of some nanobiostimulators in tomato yield and its components grown under low temperature condition (season2)	88

LIST OF FIGURES

No. of Fig.	Particulars	Page
1	Effect of some nanobiostimulators in vegetative growth of	47
	tomato plants grown under low temperature condition	
	(season1)	
2	Effect of some nanobiostimulators in vegetative growth of	48
	tomato plants grown under low temperature condition	
	(season2)	
3	Effect of some nanobiostimulators in some growth analyses	56
	parameters of tomato plants grown under low temperature	
	condition (season1)	
4	Effect of some nanobiostimulators in some growth analyses	57
	parameters of tomato plants grown under low temperature	
	condition (season2)	
5	Effect of some nanobiostimulators in membrane leakage	64
	(NIL), chlorophyll a and chlorophyll b of tomato leaves grown	
6	Effect of some nonobiostimulators in membrane normachility	64
U	chloronbyll a and chloronbyll b of tomata loaves grown under	04
	chiorophyli a and chiorophyli b of tolliato leaves grown under low tomporature condition (seeson?)	
7	Effect of some nanobiostimulators in phonologidase (PPO)	70
,	(110), perovides (PO) and catalase activities of tomato leaves	70
	grown under low temperature condition (season1)	
8	Effect of some nanobiostimulators in phenologidase (PPO).	70
0	peroxidase (PO) and catalase activities of tomato leaves	70
	grown under low temperature condition (season2)	
9	Effect of some nanobiostimulators on proline, total sugars	74
	(TS) and total phenols (TP) in tomato leaves (season1)	
10	Effect of some nanobiostimulators on proline, total sugars	74
	(TS) and total phenols (TP) in tomato leaves (season2)	
11	Effect of some nanobiostimulators on (N, P and K)	83
	concentration and protein in tomato leaves under low	
	temperature condition (season1)	
12	Effect of some nanobiostimulators on (N, P and K)	83
	concentration and protein in tomato leaves under low	
	temperature condition (season2)	
13	Effect of some nanobiostimulators in total number of flowers,	89
	total number of fruits, fruit set, yield and its components on	
	tomato plants grown under low temperature condition	
	(season1)	
14	Effect of some nanobiostimulators in total number of flowers,	90
	total number of fruits, fruit set, yield and its components on	
	tomato plants grown under low temperature condition	
	(season2)	

The response of antioxidant enzymes to exogenously applied to previous nanobiostimulators was different. It depended on the level of its concentration.

Chlorophyll content, free proline content and antioxidant enzymes (peroxidas, poly phenol oxidase and catalase), total sugars and phenols were all greater in chilled plants with NB₂ treatment compared to the control (chilled plants) and other treatments. The results indicated that the application of NB₂ (contains CPPU, BR, proline) can ameliorate the harmfull effects of chilling stress and enhanced chilling resistance.

Chilling injury (CI) decreased sharply at all-time were taken (60, 75 and 90 DAT). Meanwhile, the lowest chilling injury recorded by treating tomato plants by NB₂, NB₁ and Si_{1,2} compared to untreated plants in both seasons. This results might be due to the effect of seaweeds, salicylic acid, proline, CPPU, BR and Si which significantly effective in increase growth parameters compared to chilled plants.

There was a significant reduction in leaf chlorophyll content due to chilling stress. Proline is one of the most common compatible osmolyles in abiotic stressed plants. Proline accumulations increased by NB_2 and NB_1 (contained proline) treated plants under chilling stress was found to be at maximum. Proline accumulation is the first response of plants exposed to chilling stress in order to reduce the injury effects to cells and stabilization of cell membrane and reduced membrane leakage.

Brassinolide, CPPU and proline presented in NB₂ sharply increased the antioxidant enzyme activity indicating efficient scavenging ROS. Antioxidant enzymes showed maximum response to NB₂, NB₁ and Si compared chilled plants only. BR feeding reduced the formation of ROS triggered by chilling stress induced oxidative stress. The capacity of BR to ameliorate the desiccation stress and also BR could considerably alleviate the negative effect of chilling stress on tomato.

Chilling stress caused a significant reduction in tomato early yield and total yield with bad quality. NB₂, NB₁ and Si applications were more effective in improving tomato yield and its quality under chilling stress condition. The explanation of yield increasing of stressed plants after spraying with proline (present NB₁ and NB₂) proposed to the increased net photosynthetic, decreased rate of photorespiration, induced water use efficiency which reflect good growth rate as well as best yield with good quality.

In conclusion, results may show that tomato plants subjected to chilling created oxidative stress. NB_2 , NB_1 , Si as nanobiostimulators contain BR, CPPU, Seaweed and SA, which exerted the most protecting effect at low concentrations. Meanwhile, alleviation of chilling injury was more obvious with low concentration were the most promising dose. Which reflect a good performance of tomato plants under chilling with high quality and good quantity of yield.