

In Vitro Cryopreservation and Cytogenetics and molecular Characterization of Some Medicinal Plants

By

Muhammad AbdEl-Moniem Mahmoud Ibrahim

B.Sc. Agricultural Science (Genetics, 2010), Ain Shams University

A Thesis

Submitted In Partial Fulfillment Of The Requirements For The M.Sc.

In

Agricultural Science (GENETICS and GENETIC ENGINEERING) (Department of Genetics and Genetic Engineering) Faculty of Agriculture, Moshtohor Benha University

Title	Page
I. Introduction and Aim of work	1
1.1- Introduction	1
1.2- Aim of work	4
II. Review of Literature	5
2.1- Cytogenetic Characterization	6
2.2- Molecular Characterization	10
2.3. Cryopreservation Study	14
III. Materials and Methods	20
3.1- Materials	20
3.2- Methods	20
3.2.1- Cytogenetics Characterization	20
3.2.1.1- Karyotype study	20
3.2.1.2- Collection of root tips	21
3.2.1.3- Pre-treatment of root tips	21
3.2.1.4- Fixation and Preparation	21
3.2.1.5- C-banding and karyotype	21
3.2.1.6- Microscope examination, karyotype and idiogram	22
3.2.2- Molecular Characterization	23
3.2.2.1- DNA Extraction	23
3.2.2 Molecular Markers	23
3.2.2.3.1- Inter Simple Sequence Repeats (ISSR	23
3.2.2.3.2- AFLP-PCR marker	24

3.2.2.3.2.1-AFLP Reactions Restriction Digestion of Genomic DNA	25
3.2.2.3.2.2- Adapter Ligation Reaction.	25
3.2.2.3.2.3- Pre-selective PCR amplification reactions	26
3.2.2.3.2.4 PCR profile	26
3.2.2.3.2.5- Selective Amplification PCR Reactions	26
3.2.2.3.2.6- Detection of AFLP products	27
3.2.2.3.2.7- Polyacrylamide Denaturing Sequencing Gel Preparation and Electrophoresis	27
3.3- Cryopreservation Study	29
3.3.1- Cryopreservation of whole seeds	29
3.3.1.1- Desiccation of seeds	29
3.3.1.2- Storage in liquid nitrogen	29
3.3.1.3- Survival assessment	30
IV. Results and Discussion	31
4.1- Cytogenetics Characterization studies	31
4.1.1- Karyotype analysis of the three accessions	32
4.1.1.1- Karyotype analysis of Cumin	32
4.1.1.2- Karyotype analysis of Caraway	36
4.1.1.3 Karyotype analysis of Coriander	39
4.1.2- C-Banding Analysis	43
4.1.2.1- C-Banding Analysis in Cumin	43
4.1.2.2- C-Banding Analysis in Caraway	45
4.1.2.3- C-Banding Analysis in Coriander	47

4.2- Molecular Characterization studies	49
4.2.1- ISSR markers	49
4.2.2- AFLP markers	56
4.2.3- Combined analysis for ISSR and AFLP	62
4.3- Cryopreservation Study	63
V. Summary	66
VI. References	72
Arabic Summary	1

LIST OF TABLES

Table	Page
Table (1): Accession name, and source location of the three accessions under study	20
Table (2): Inter Simple Sequence Repeats (ISSR) Primers sequence,primers name and annealing temperature (Ta)	24
Table (3): AFLP primer combinations	25
Table (4): Shown the average of Karyomorphologicalmeasurements for Cumin chromosomes	34
Table (5): Shown the average of Karyomorphologicalmeasurements for Caraway chromosomes	37
Table (6): Shown the average of Karyomorphologicalmeasurements for Coriander chromosomes	41
Table (7): Describe the banding pattern in the seven chromosomes of cumin.	44
Table (8): Describe the banding pattern in the ten chromosomes of Caraway	46
Table (9): Describe the banding pattern in the eleven chromosomes of for Coriander	48
Table (10): ISSR Primers name, size range of amplified fragments,monomorphic and polymorphic amplicons, polymorphic percentageand unique negative and positive bands for the three species ofApiaceae Cumin, Caraway and Coriander	54
Table (11): Primer name and Molecular weight of each band for the three genera.	55

Table (12): The similarity matrix of the three species of Apiaceae (cumin, caraway and coriander) based on ISSR primers	56
Table (13): Primer name and Molecular weight of amplified fragment DNA.	60
Table (14): AFLP Primers name, size range of amplified fragments, monomorphic and polymorphic amplicons, polymorphic percentage and unique negative and positive bands for the three species of Apiaceae Cumin, Caraway and Coriander, respectively.	61
Table (15): The similarity matrix of the three species of Apiaceae(cumin, caraway and coriander) based on AFLP primers	61
Table (16): Comparative result showing different markers (ISSR,AFLP and ISSR + AFLP) obtained from 3 species	62
Table (17): The similarity matrix of the three species of Apiaceae(cumin, caraway and coriander) based on the combined (ISSR andAFLP) primers	63
Table (16): Shown the seed germination observation in percentage and the average mean between the treatments and the species of the 6^{th} weeks.	65

LIST OF FIGURES

Figure	Page
Figure (1): The chromosomes of Cumin (<i>Cuminum cyminum</i>) $(2n = 14)$ at metaphase	35
Figure (2): The Karyotype of Cumin chromosomes $(Cuminum \ cyminum)^* \ (2n = 2X = 14)$	35
Figure (3): Scaling ideogram for Cumin (<i>Cuminum cyminum</i>) chromosomes $(n = X = 7)$ ratio.	35
Figure (4): The chromosomes of Caraway <i>Carum carvi</i> (2n = 20) at metaphase.	38
Figure (5): The Karyotype of Caraway chromosomes <i>Carum carvi</i> *(2n = 2X= 20)	38
Figure (6): Scaling ideogram for Caraway <i>Carum carvi</i> chromosomes ($n = X = 10$) ratio.	38
Figure (7): The chromosomes of Coriander (<i>Coriandrum</i> sativum) $(2n = 2X = 22)$ at metaphase	42
Figure (8): The Karyotype of Coriander chromosomes (<i>Coriandrum sativum</i>) $*(2n = 2X = 22)$	42
Figure (9): Scaling ideogram for Coriander <i>Coriandrum sativum</i> ($n = X = 11$) ratio.	42
Figure (10): Ideogram of the C-Banding chromosomes in haploid metaphase for Cumin 7 Chromosomes	44
Figure (11): Ideogram of the C-Banding chromosomes in haploid metaphase for Caraway 10 Chromosomes.	46

Figure (12): Ideogram of for C-Banding chromosomes in	49
haploid metaphase for Coriander 11 Chromosomes.	12
Figure (13): ISSR profiles of cumin, caraway and coriander species as detected by different ISSR primers.	53
Figure (14): UPGMA Dendrogram showing the genetic relatedness of cumin, caraway and coriander species based on ISSR data.	56
Figure (15): AFLP profiles of cumin, caraway and coriander species as detected by different AFLP combination primers.	59
Figure (16): UPGMA Dendrogram showing the genetic relatedness of cumin, caraway and coriander species based on AFLP.	61
Figure (17): UPGMA Dendrogram displaying the genetic similarity estimates according to combined data (ISSRs and AFLPs) within the three species Cumin, Caraway and Coriander	63
Figure (18): Ideogram for the significant of different	65

between the genera and the treatment of desiccation.

In Vitro Cryopreservation and Cytogenetics and Molecular Characterization of Some Medicinal Plants

Muhammad Abd El-Moniem Mahmoud Ibrahim

Under Supervision of:

Prof. Dr. Makhlouf Mohamed bekhit Prof. Dr. Mohamed Refaat Prof. Dr. Neveen Abd-El Fattah Hassan Dr. Tamer El-Akkad

Abstract

The objectives of this study were to characterize three genera germplasm of Apiaceae family, namely cumin, caraway and make chromosome characterization coriander. to and molecular fingerprinting for the mentioned genera. Karyomorphological results confirmed that: Cuminum cyminum L. (cumin: 2n=14), Carum carvi (caraway: 2n=20) and Coriandrum sativum (coriander: 2n=22). The total Chromatin Relative Length percentage (RL%) shown cumin $\pm 10.69 \mu m \pm 19.70 \mu m$, caraway $\pm 7.30 \mu m \pm 13.40 \mu m$ and coriander $\pm 5.58 \mu m \pm 12.07 \mu m$. Satellites in all the cases were associated to short arms. The molecular characterization for the three genera (caraway, cumin, and coriander) was conducted using 5 AFLP combinations and 15 ISSR primers. The total amplified bands were 330 (162 ISSR+168 AFLP), with an average of 83.75% (89.5% ISSR+78% AFLP) per primer. The combined dendrogram based on both AFLP and ISSR markers for the three genera was divided into 2 main clusters; the first cluster has 2 accessions (cumin and caraway) with 60% similarity, while coriander falls in a distinct cluster.

Key words: Karyotype; Cytogenetic; Cytology; C-banding; Chromosome; Cumin; Caraway; Coriander; AFLP; ISSR; molecular marker; Cryopreservation.