Encapsulation and Bio-Composite Films Prepared by Alginate Incorporated with Jamun (*Syzygium cumini*) Polyphenols

By

MOHAMED EZZAT MOHAMED ABDIN

A Dissertation Submitted to Nanjing Agricultural University In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Food Science and Engineering

Supervised by

Xiaoxiong Zeng

College of Food Science and Engineering

Nanjing Agriculture University,

Nanjing, China

June, 2020

Table of contents

LIST OF ABBREVIATIONS AND ACRONYMS	
摘 要	
ABSTRACT	
CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW	
1.1 Syzygium cumini general overview	1
1.1.1 Syzygium cumini fruits (SCF)	2
1.1.2 Syzygium cumini seeds (SCS)	
1.2 EXTRACTION OPTIMIZATION OF BIOACTIVE COMPOUNDS	5
1.3 ENCAPSULATION OF POLYPHENOLS	6
1.3.1 Methods used for encapsulation	7
1.4 EDIBLE FILMS AND COATING FOR FOOD PACKAGING APPLICATION	
1.5 POLYMERS USED FOR ENCAPSULATION AND PACKAGING FILMS APPLICATION	ons11
1.5.1 Maltodextrins as an encapsulating polymer	11
1.5.2 Maltodextrins as a packaging film	
1.5.3 Chitosan as an encapsulating polymer	
1.5.4 Chitosan as a packaging film polymer	14
1.5.5 Sodium alginate as encapsulating material	
1.5.6 Sodium alginate as a packaging material	15
1.5.7 Gum Arabic as an encapsulating material	17
1.5.8 Gum Arabic as a packaging material	
1.6 RESEARCH PURPOSE	
1.7 AIMS AND OBJECTIVES	
References	
CHAPTER 2. EXTRACTION OPTIMIZATION, ANTIOXIDANT ACTIVIT	Y AND
INHIBITION ON A-AMYLASE AND PANCREATIC LIPASE OF POLYPI	HENOLS
FROM THE SEEDS OF SYZYGIUM CUMINI	
2.1 INTRODUCTION	
2.2 MATERIALS AND METHODS	
2.2.1 Materials	
2.2.2 Seeds preparation	

2.2.3 Experimental design	37
2.2.4 Determination of TPC	39
2.2.5HPLC analysis	39
2.2.6 Assay of enzymes inhibition	39
2.2.7 Antioxidant activity of SCSEP	40
2.3 RESULTS AND DISCUSSION	42
2.3.1 Single factor experiments	42
2.3.2 Analysis of RSM and extraction optimization	43
2.3.3 Polyphenols in the purified fraction	46
2.3.4 Antioxidant activity	47
2.3.5 Inhibitory effects on α-amylase and PL	49
2.4 Conclusion	49
References	50
CHAPTER 3. ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES OF	
TARGET ANTHOCYANINS DI-GLUCOSIDES ISOLATED FROM SYZYGIUM	
CUMINI PULP BY HIGH SPEED COUNTER-CURRENT CHROMATOGRAPHY	53
3.1 INTRODUCTION	53
3.2 MATERIALS AND METHODS	55
3.2.1 Materials and reagents	55
3.2.2 preparation of crude extract and partially purified anthocyanins	55
3.2.3. Characterization of CE and PPA	56
3.2.4 HSCCC separation procedure	57
3.2.5 Analysis of separated fractions by HPLC/ESI-MS analysis	58
3.2.6 Assay of antioxidant activity of target compounds	58
3.2.7 Determination the cytotoxicity of MDG on RAW 264.7	59
3.2.8 Assay of NO	60
3.2.9 Determination of cytokine production in RAW264.7 cells	60
3.2.10 Statistical analysis	60
3.3 Results and discussions	60
3.3.1 Partially purified anthocyanins	60
3.3.2 HPLC analysis of PPA	62
3.3.3 Preparation of high purity target anthocyanins by using HSCCC	62
3.3.4 Identification of separated peaks	64

3.3.5 Antioxidant activity of isolated compounds	66
3.3.6 Anti-inflammatory activity of MDG	68
3.4 CONCLUSION	71
References	72
CHAPTER 4. ENHANCED THE ENTRAPMENT AND CONTROLLED RELEAS	EOF
SYZYGIUM CUMINI SEEDS POLYPHENOLS BY MODIFYING THE SURFACE	AND
INTERNAL ORGANIZATION OF ALGINATE-BASED MICROCAPSULES	79
4.1 INTRODUCTION	79
4.2 MATERIALS AND METHODS	81
4.2.1 Materials	81
4.2.2 Preparation of SCSE	81
4.2.3 Preparation of SCSE-Capsules	81
4.2.4 Encapsulation efficiency measurement	82
4.2.5 FT-IR analysis of capsules	82
4.2.6 Characterization the morphological structure of capsules	83
4.2.7 In vitro release experiments	83
4.2.8 Determination the swelling and compression tests	83
4.2.9 DSC analysis of capsules	84
4.2.10 Characterization of antioxidant activity	84
4.2.11 Statistical analysis	85
4.3 RESULTS AND DISCUSSIONS	85
4.3.1 Microencapsulation efficiency	85
4.3.2 FT-IR analysis of capsules	86
4.3.3 The morphological and internal characterization of capsules	87
4.3.4 Characterization the swelling, TPC release and compression of capsules	88
4.3.5 Analysis of DSC	92
4.3.6 Antioxidant capacity of capsules under gastric and intestinal digestion	93
4.4 Conclusion	94
References	95
CHAPTER 5. TWO-STEPS OF GELATION SYSTEM ENHANCED THE STABIL	ITY
OF SYZYGIUM CUMINI ANTHOCYANINS BY ENCAPSULATION WITH SODI	UM
ALGINATE, MALTODEXTRIN, CHITOSAN AND GUM ARABIC	99
5.1 INTRODUCTION	99

5.2 MATERIALS AND METHODS	101
5.2.1 Materials	101
5.2.2 Preparation of anthocyanins extract (ANCE)	101
5.2.3 Characterization of ANC.E	101
5.2.4 Encapsulation of ANC.E	102
5.2.5 Determination of total anthocyanins inside particles	102
5.2.6 Determination of microencapsulation efficiency	103
5.2.7 Fourier transform-infrared spectroscopy (FT-IR)	103
5.2.8 Differential scanning calorimetry analysis (DSC)	103
5.2.9 Scanning electron microscopy (SEM) analysis for the particles	103
5.2.10 Characterization of fabricated beads	103
5.2.11 Determination of anthocyanins stability	104
5.2.12 Color analysis of particles	105
5.3 RESULTS AND DISCUSSIONS	105
5.3.1 Characterization of ANCE	105
5.3.2 Evaluation of the encapsulation efficiency	106
5.3.3 FT-IR analysis of particles	107
5.3.4 DSC thermodynamic analysis	107
5.3.5 SEM analysis of fabricated particles	110
5.3.6 Characterization of the physical properties of the particles	112
5.3.7 Effect of storage days on anthocyanin content	113
5.3.8 Changes in the color during storage	116
5.4 Conclusions	118
References	119
CHAPTER 6. FABRICATION OF NOVEL ACTIVE SODIUM ALGINATE-GUM	
ARABIC FILM INCORPORATED WITH SYZYGIUM CUMINI SEEDS POLYPHE	ENOLS
FOR MAINTAINING BREAD QUALITY	125
6.1 INTRODUCTION	125
6.2 MATERIALS AND METHODS	126
6.2.1 Reagents and chemicals	126
6.2.2 Preparation of <i>Syzygium cumini</i> seeds extract	126
6.2.3 Preparation of SA/GA films	127
6.2.4 Characterization of films	127

6.2.5 Statistical analysis	. 132
6.3 RESULTS AND DISCUSSIONS	. 132
6.3.1 Characterization of films properties	. 132
6.3.2 Anti-fungal activity	. 139
6.3.4 Texture properties of bread	. 143
6.3.5 Sensory evaluation of bread	. 145
6.3.6 Practical changes of treated bread compared with FB	. 146
6.4 Conclusion	. 146
References	. 148
SUMMARY	. 155
NEW KNOWLEDGE	. 157
FUTURE RESEARCH DIRECTIONS AND RECOMMENDATIONS	. 159
PUBLICATIONS	. 161
ACKNOWLEDGEMENT	. 163

List of Tables

Table 1-1 The bioactive components in various parts of Syzygium cumini	2
Table 2.1 BBD and response values for TPC, IC $_{50}$ of α -amylase and PL	38
Table 2-2 ANOVA for response surface quadratic model	45
Table 3-1 Characterization of PPA compared with CE	62
Table 3-2 Partition coefficients (<i>K</i>) of three compounds in HSCCC solvent system	63
Table 3-3 Identification of the separated three anthocyanins diglucosides	65
Table 4-1 Optimization of the SCSE microencapsulation efficiency in calcium	
alginate under different conditions	85
Table 5-1 Characterization of Syzygium cumini anthocyanins extract (ANC.E)	106
Table 5-2 Physical properties of the particles containing Syzygium cumini	113
anthocyanins with different blends	
Table 6-1 Physical properties of SG-SCSE films	138
Table 6-2 Color properties and opacity of SG-SCSE films	139

Figure Legends

Figure 1-1 The Syzygium cumini seeds (A) and the Syzygium cumini fruits (B)
Figure 1-2 Summarized the biological properties and principal action mechanisms that
describe the impacts of the most prevalent polyphenolic compounds investigated in
various parts of Syzygium cumini
Figure 1-3 Two major forms of encapsulation technology
Figure 1-4 Characterization of encapsulated polyphenols capsules produced by different
encapsulation processes
Figure 1-5 Encapsulation methods used for phytochemicals
Figure 1-6 The formation of pores in glassy wall material through freeze-drying 10
Figure 1-7 The different types of biomaterials that contribute to film forming
Figure 1-8 Chemical structure of maltodextrins
Figure 1-9 Chemical structure of chitosan
Figure 1-10 Chemical structure of sodium alginate
Figure 1-11 Chemical structure of gum Arabic
Figure 2-1 Effects of extraction time (a and b), ethanol concentration (c and d) and
solvent-solid ratio (e and f) on TPC, IC ₅₀ values for α -amylase and PL. Bars with
different letters within the same enzyme are significantly different ($P < 0.05$) 43
Figure 2-2 Response surface plots showing the effects of extraction variables on TPC
(a), IC $_{50}$ of $\alpha\text{-amylase}$ (b) and IC $_{50}$ of PL (c)
Figure 2-3 HPLC chromatograms of SCSE compared with typical phenolic standards 1,
gallic acid; 2, catechin; 3, chlorogenic acid; 4, caffeic acid; 5, epicatechin; 6,
kaempferol; 7, ferulic acid. The presence of phenolic acids was identified by
comparing their retention time with those of commercial standards by DAD spectra
(200-500 nm)
Figure 2-4 Antioxidant activity (A, DPPH free radical scavenging activity; B, ABTS
radical scavenging activity; D reducing power) and inhibition on α -amylase and PL
(E) of SCSE. Bars with different letters between Vc and SCSE or within the same
enzyme are significantly different (P≤0.05)
Figure 3-1 HPLC chromatograms (A, detected at 280 nm; B, detected at 530 nm) of PPA
from column chromatography of Amberlite XAD-2 resin

- Figure 3-2 Elution profile of PPA purified by HSCCC (A) and chromatograms of compounds I, II and III from the purification of PPA detected at 530 and 280 nm(B).

Figure 3-5 Effects of MDG on RAW264.7 cell viability (A), production of nitric oxide (B), IL-6 (C), IL-1 β (D) and TNF- α (E). Data are expressed as the means \pm SD (n = 3). The error bar indicates the SD, and values defined with various letters are Figure 4-1 FT-IR spectra in the 500-4000 cm⁻¹ region of sodium alginate powder, calcium alginate capsules, Syzygium cumini seed extract (SCSE) and alginate Figure 4-2 SEM photographs of crushed capsules (A), external surface (B) and internal surface (C) of left-side D.C and right-side FD.C prepared from optimum efficiency Figure 4-3 Swelling ratio, TPC release rate (A, B) and Young's modulus versus (C) of D.C Figure 4-4 DSC thermogram of D.C, FD.C, SCSE, calcium alginate capsules and sodium Figure 4-5 Antioxidant capacity (A) ABTS, (B) FRAP of D.C, FD.C and SCSE after simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) digestion. Data are expressed as mean \pm SD, the initial total polyphenol content in samples was 2.802 ± 0.057 Figure 5-1 Effect of mixing the first carrier SA at a stable amount 1.5 g/100mL ANC.E with different concentrations from the second carrier (GA, MD, CH and SA) on the ANC.E encapsulation efficiency (A), the FT-IR spectra for different particles (B) and the DSC thermograms for fabricated particles......109

Figure 5-2 SEM surface micrographs of freeze-dried particles with A, SA.SA, B, SA.GA,
C, SA.MD and D, SA.CH111
Figure 5-3 Total monomeric anthocyanins (mg of anthocyanins/100mL extract) (A) and
ANC.E degradation rate (B) in ANC.E, FD.E and fabricated particles during 28 days of
storage at 25 °C 115
Figure 5-4 Comparison of all color parameters (L*, a* and b*) in fabricated particles
(A=SA:SA, B=SA:GA, C=SA:MD, and D= SA:CH) during storage days 117
Figure 6-1 SEM micrographs of SG (A) and SG-SCSE films (B, 0.4% SCSE; C, 0.8% SCSE;
D, 1.2% SCSE; E, 1.6% SCSE
Figure 6-2 Characterization of SG-SCSE films (A) FT-IR spectra, (B) mechanical
properties, (C) DSC thermo-grams and (D) scavenging activities of the SG-SCSE films on
DPPH and ABTS radicals. Different letters indicate significant differences ($p < 0.05$) 134
Figure 6-3 The inhibition zone diameter around films disks against Aspergillus niger and
Aspergillus flavus. Different letters (a-e) in the same fungi type show significant
differences ($p < 0.05$) between samples
Figure 6-4 Numbers of yeasts and molds (log cfu/g) naturally founded in bread slices
during the storage days at 27 $^\circ C$ incubation of Petri dishes plates
Figure 6- 5 Visual appearance of molds growth for inoculated bread slices by A. niger
and A. <i>flavus</i> after 25 days of storage at 27 $^{\circ}$ C A, NC; B, SG; C, SG-SCSE1; D, SG-
SCSE2; E, SGSCSE3; F, SG-SCSE4
Figure 6-6 Texture of different treated bread slices (A, chewiness; B, gumminess; C,
hardness) during 20 days of storage at 27 $^{\circ}$ C compared with fresh bread. Different letters
between legends inside the same day of storage indicate significant differences ($p < 0.05$)
compared with fresh bread (FB) 144
Figure 6-7 Sensory evaluation of different treated bread slices (D) after 20 days of
storage compared with fresh bread (FB) 145
Figure 6-8 Visual differences between fresh bread and SG-SCSE4 (A, crumb color; B
and C, ability to bow; D and E fungus growth) after 40 days of storage on 27 °C and
(F) treated crumb surface with SG coating146

Encapsulation and Bio-Composite Films Prepared by Alginate Incorporated with Jamun (*Syzygium cumini*) Polyphenols

ABSTRACT

Jamun or Jambolan (*Syzygium cumini*), which belongs to Myrtaceae family is one of the most important medically plants. The fruits, seeds, bark and leaves were reported as a traditional medicine for diarrhea, hypoglycemic and antibacterial effects. *S. cumini* consumption has different health benefits such as advantageous effects on pro-apoptotic and antiproliferative against breast cancer cells.

Additionally, its extracts were exploited in the treatment of diabetes in India as well as many other countries. Polyphenols present in the *S. cumini* plants act as useful antioxidants that obstruct the oxidative deterioration of oils and fats. Moreover, the extracts of seeds and fruits have been reported as a valuable source of antimicrobial agents against a lot of harmful bacteria and fungal strains. The natural and medical bioactive compounds like polyphenols could be grafted on biopolymers in form of encapsulation or coating techniques to enhance the control release, shelf life, stability and to provide protection against unsuitable environmental conditions. Thus, the objectives of the present studies were to optimize the extraction of the bioactive components from the seeds and fruits of *S. cumini* and testing its ability to encapsulate inside basic polymer named alginate mixed with various polymers types. On the other hand, fabrication of alginate films incorporated with *S. cumini* seeds extracts to maintain the quality and prolong the shelf life of bread slices during storage. To achieve these aims the following steps were performed;

Firstly, the optimal extraction conditions of polyphenols from *S. cumini* seeds were determined by response surface methodology (RSM). The antioxidant activity and inhibition on α -amylase and pancreatic lipase of extracted polyphenols were investigated. As results, the optimal extraction conditions in the ultrasonic extraction process which maximized total polyphenols content, minimized the IC₅₀ values of α -amylase and pancreatic lipase were determined as follows: extraction time 60 min, ethanol concentration 63% and solvent/solid ratio 44 mL g⁻¹. The main phenolic compounds in partially purified fraction of *S. cumini* seeds were catechin, epicatechin, kaempferol, gallic, 5-caffeoylquinic, caffeic and ferulic

acids. In addition, the partially purified fraction inhibited 87.66 ± 5.55 and $86.61 \pm 3.15\%$ of α -amylase and pancreatic lipase, respectively. The results suggested that *Syzygium cumini* seeds could be explored as a natural antioxidant and could be used as a source of highly antidiabetic and anti-obesity bioactive compounds.

Secondly, high-speed counter-current chromatography (HSCCC) was utilized as an effective procedure for isolation of targeted three anthocyanins di-glucosides from *S. cumini* pulp by using an optimized biphasic successful combination of different solvents. The resulted fractions described by HPLC/ESI-MS to be delphinidin 3,5-diglucoside (DDG), petunidin 3,5-diglucoside (PDG) and malvidin 3,5-diglucoside (MDG). A weight of 150 mg of sample yielded 7.53, 22.68 and 39.09 mg for DDG, PDG and MDG, respectively. It was stated that the target three anthocyanins possessed strong antioxidant activities. Furthermore, MDG exhibited definite advantages for inhibition of nitric oxide release and proinflammatory mediators like IL-6, IL-1 β and TNF- α in LPS-induced RAW264.7 macrophages. The results propose that HSCCC can be utilized to separate highly antioxidative and anti-inflammatory natural components from *S. cumini* pulp.

Thirdly, calcium alginate was used to encapsulate *S. cumini* seed polyphenolic extract to maintain its stability and functionality. Calcium chloride was used as a cross linking agent to get the final form of calcium alginate capsules. Different ratios from sodium alginate and calcium chloride were used to optimize encapsulation method. Two different methods for drying capsules were conducted; freeze-dried (FD.C) and vacuum dried (D.C). Encapsulation Efficiency for FD.C and D.C were 75.96 \pm 0.68 and 70.20 % \pm 0.59, respectively. The scanning electron microscopy (SEM) photographs and the mechanical properties indicated that the polysaccharide networks of D.C were strongly firm to prevent release of TPC in gastric phase and some delay of TPC in intestinal phase. FD.C showed fragile polysaccharide networks however, prevented the release of TPC in gastric phase and exhibited more release of TPC than D.C in intestinal phase. The microencapsulation process improved the thermal stability of the extract with 171.97 °C and 180.36 °C for FD.C and D.C, respectively.

Additionally, an efficient method based on encapsulation efficiency of *S. cumini* anthocyanin extract (ANC.E) was established by using a stable concentration from (ANC.E) and sodium alginate (SA) as a first step to interact with different concentrations from maltodextrin (MD), gum Arabic (GA) and chitosan (CH) as second carriers for the second step. Freeze-drying was used to fabricate particles from different gelling optimized blends. The encapsulation efficiency, Fourier transform-infrared spectroscopy (FT-IR), thermal

behavior, morphological structure, physical properties, ANC.E degradation and color properties during storage days greatly influenced. The optimum encapsulation efficiency 92.4% was achieved by SA (1.5% w/v) and CH (0.8% w/v) in ANC.E (278.21 mg/100mL) solution named SA.CH particles. The SA.CH particles surface were like-sheet particles and were unique in FT-IR analysis that showed new peaks and shifting in wave numbers. Additionally, the SA (1.5% w/v) and GA (0.8% w/v) in ANC.E (278.21 mg/100mL) solution named SA.GA particles besides the SA.CH particles decreased the ANC.E degradation rate to 3.57 and 3.96 %, respectively, compared with other tested particles. Moreover, they showed non-significant differences in color properties during the storage days. Therefore, the obtained results provided a potential approach to utilize ANC.E as colorants or healthy ingredients in functional food.

Finally, a novel biodegradable sodium alginate/gum Arabic (SG) films were obtained. The influence of *S. cumini* seeds extract (SCSE) incorporation in SG films on morphological structure, polymer interaction, thermal behavior, antioxidant activity and physical properties were investigated. Moreover, the fabricated films were tested as a coating material to extend the shelf life of the bread slices. Scanning Electron Microscopy micrographs showed heterogeneous and rough surface after incorporation by SCSE. Possible cross-linked interaction between alginate and gum Arabic with physical interaction between SCSE and SG films were assessed by FT-IR. Although, the addition of SCSE into SG films declined the thermal stability, elongation at break (EB), tensile strength (TS) and moisture content, films with better opacity, solubility and water vapor permeability were obtained. The SG-SCSE films showed obvious inhibitory effect on the growth of *Aspergillus niger* and *A. flavus* without non-significant differences in bread texture in comparison with fresh bread.

Generally, the findings of the current study showed that, *S. cumini* seeds as a by-product which accumulate annually with a large amount can be used to produce natural extracts that work as enzymes inhibitors for treatment of diabetic and obesity. On the other hand, it is possible to isolate compounds from *S. cumini* fruits with a high purity and good scavenging activity against free radicals to act as a standard and anti-inflammatory activity. Additionally, sodium alginate was an ideal matrix to interact with other polymers with the help of calcium ions to produce microcapsules for carrying of *S. cumini* bioactive compounds to control the release of extracts or prolong the shelf life of sensitive components like anthocyanins. Furthermore, sodium alginate in combination with gum Arabic can be utilized to produce a

novel active bio-composite films incorporated with seeds extracts that used to retard the yeasts, molds growth and staling in bread slices with preservation of its quality.

KEYWORDS: *Syzygium cumini*; Optimization; Polyphenols; Anthocyanins; Sodium alginate; Encapsulation; SG-films; Bread slices