ENVIRONMENTAL MANAGEMENT AND BIOLOGICAL ASPECTS OF THE ERIOPHYID MITES INFESTING SOME VEGETABLE CROPS

By BASSEM MAHMOUD MOHAMED FARAHAT

B. Sc. Agric., (Agric. Zoology and Nematology), Faculty of Agric., Cairo Al-Azhar University, 2003.
M. Sc. Agric., (Plant Protection- "Acarology"), Faculty of Agric., Ain Shams University, 2012.

THESIS Submitted in Partial Fulfillment of The Requirements for the Degree

Of DOCTOR OF PHILOSOPHY

In AGRICULTURAL SCIENCES (Agric. Zoology and Nematology–"Acarology")

Department of Agricultural Zoology and Nematology Faculty of Agriculture, Cairo Al-Azhar University

1441 A.H. 2020 A.D.

CONTENTS

Subject	Page
GENERAL INTRODUCTION	1-3
I.REVIEW OF LITERATURE	4
A- Effect of weather factors on mites populations	4-9
B- The role of predacious mites in reduction phytophagous mite populations	10-18
C-Incidence of phytophagous mites on horticultural crops	19-29
D-Effect of some phytochemical components on the infestation rates of some injurious mites.	30- 37
E- Effect of anatomical characters and Trichomes types on the infestation of some injurious mites.	38-40
F- Effect of Different safe compounds for control some injurious mites.	41-55
G-Biological studies of phytophagous mites and predacious phytoseiid mites.	56-84
i. Eriophyids	56-65
ii. Phytoseiids	66-84
II. MATERIAL AND METHODS	85
A- Sampling and population assessment	85-86
B- Effect of Eriophyoid mites on Macro-Micronutrients and bio-chemicals contents of tomato, eggplant and artichoke cultivars leaves.	87-92
C- Anatomical characters (epidermal layer, cuticle thicknesses and trichomes types) of tomato, eggplant and artichoke cultivar.	93-94
D-Efficacy of recent acaricides for control eriophyid mites.	95-97
E- Biological studies	98-103
III- RESULTS AND DISCUSSIOONS	104-
1- Seasonal fluctuations in phytophagous and predacious mite populations on different vegetable crops	104- 139
A- <u>Climatic conditions</u>	106-107

	1
B- Population dynamics of the tomato russet mite and its phytoseiid predator on three tomato cultivars	108-139
i- Tomato 765 cultivar	112-122
ii- Safeera tomato cultivar	123-129
iii- Tomato 448 cultivar	130-139
C - Population dynamics of the egg-plant rust mite and	1 40 1 70
its phytoseiid predator on three egg-plant cultivars:	140-170
i- Batra egg-plant cultivar	144- 154
ii- N-Suma egg-plant cultivar	155- 161
iii- Black beauty egg-plant cultivar	162- 170
D - Population dynamics of the artichoke eriophyid mite on two artichoke cultivars	171
i- Egyptian artichoke cultivar	173
ii- <u>French artichoke cultivar</u>	184
2- Evaluation of the relationship between leaf photochemical components and harmful eriophyid mite infestations.	192
i- Tomato cultivars (765, Safeera and 448)	194
ii- Eggplant cultivars (Batra, N-suma and Black beauty)	204
iii-Artichoke cultivars (Egyptian and French)	213

3- Histological studies on the cuticle and lower epidermal layers of <i>Solanaceae</i> and <i>Asteraceae</i> cultivars.	225
i- Botanical observations	227
ii- Trichomes types	235
4- Efficacy of recent safe compounds for control of eriophyid tomato, eggplant and artichoke mites.	244
5- Biological studies	256
i- Eriophyid mites	256
1- The tomato russet mite, A.lycopersici	258
2- The eggplant rust mite, A.melongenus	282
3- The artichoke rust mite, A.neocynarae	304
ii- Phytoseiid mites:	325
1- Amblyseius swirskii	325
2- Cydnoseius negevi	337
SUMMARY	351-361
REFERENCES	362-420
ARABIC SUMMARY	1-11

Tables No.	Page
 (1): Population dynamics of <i>A.lycopersici</i> and its pro <i>A.swirskii</i> on the tomato 765 cultivar during the first s (2016 / 2017) 	
 (2): Population dynamics of <i>A.lycopersici</i> and its pro <i>A.swirskii</i> on the tomato 765 cultivar during the season (2017 / 2018) 	
 (3): Population dynamics of <i>A.lycopersici</i> and its pro <i>A.swirskii</i> on the Safeera tomato cultivar during the season (2016 / 2017) 	
 (4): Population dynamics of <i>A.lycopersici</i> and its pro <i>A.swirskii</i> on the Safeera tomato cultivar during the season (2017 / 2018) 	
 (5): Population dynamics of <i>A.lycopersici</i> and its pro <i>A.swirskii</i> on the tomato 448 cultivar during the first st (2016 / 2017) 	
 (6): Population dynamics of <i>A.lycopersici</i> and its pre <i>A.swirskii</i> on the tomato 448 cultivar during the season (2017 / 2018) 	
(7): Correlation coefficientbetween each of temper relative humidity and <i>A.lycopersici</i> population on the tomato cultivars during two successive years (2016 / 2	three 137
 (8): Population dynamics of <i>A.melongenus</i> and its pro <i>C.negevi</i> on the Batra egg-plant cultivar during the season (2016 / 2017) 	
(9): Population dynamics of A.melongenus and its pro C.negevi on the Batra egg-plant cultivar during the s season (2017 / 2018)	

(10): Population dynamics of A.melongenus and its predator	
C.negevi on the N-Suma egg-plant cultivar during the first	159
season (2016 / 2017)	
(11): Population dynamics of A.melongenus and its predator	
C.negevi on the N-Suma egg-plant cultivar during the	160
second season (2017 / 2018)	
(12): Population dynamics of A.melongenus and its predator	
C.negevi on the Black beauty egg-plant cultivar during the	167
first season (2016 / 2017)	
(13): Population dynamics of A.melongenus and its predator	
C.negevi on the Black beauty egg-plant cultivar during the	168
second season (2017 / 2018)	
(14): Correlation coefficientbetween each of temperature,	
relative humidity and A.melongenus population on the	1 = 0
three egg-plant cultivars during two successive years (2016	170
/ 2018).	
(15): Population dynamics of A.neocynarae on the Egyptian	150
artichoke cultivar during the first season (2016/2017)	179
(16): Population dynamics of A.neocynarae on the Egyptian	100
artichoke cultivar during the second season (2017 / 2018)	180
(17): Population dynamics of A.neocynarae on the French	100
artichoke cultivar during the first season (2016/2017)	188
(18): Population dynamics of A.neocynarae on the French	1.0.0
artichoke cultivar during the second season (2017 / 2018)	189
(19): Correlation coefficientbetween each of temperature,	
relative humidity and A.neocynarae population on the two	101
artichoke cultivars during two successive years (2016 -	191
2018).	

(20): Average weight for twenty leaves of both healthy and heavily infested tomato cultivars (765, Safeera and 448) leaves by the tomato russet mite <i>Aculops lycopersici</i>	197
(21): Average macronutrient % and micronutrient ppm and bio- chemicals in healthy and heavily infested <i>Solanum</i> <i>lycopersici</i> L. leaves by the tomato russet mite <i>Aculops</i> <i>lycopersici</i> of different tomato cultivars.	198
(22): Correlation coefficient between macro - and	
micronutrients and Aculops lycopersici population on	199
heavily infested leaves of different tomato cultivars.	
(23): Average weight for twenty leaves of both healthy and heavily infested tomato cultivars (Batra, N-suma and Black beauty) leaves by the tomato russet mite <i>Aceria</i> <i>melongenus</i>	206
(24): Average macronutrient % and micronutrient ppm and bio- chemicals in healthy and heavily infested <i>Solanum</i> <i>melongenaL</i> . leaves by the eriophyid mite <i>Aceria</i> <i>melongenus</i> of different egg-plant cultivars.	207
(25): Correlation coefficient between macro - and	
micronutrients and <i>Aceria melongenus</i> population on heavily infested leaves of different egg-plant cultivars.	208
neuvity infested leaves of different egg plant editivals.	
(26): Average weight for sixty discs of both healthy and heavily infested artichoke cultivars (Egyptian and French) leaves by the eriophyid mite <i>Aceria neocynarae</i>	218
(27): Average macronutrient % and micronutrient ppm and bio-	
chemicals in healthy and heavily infested <i>Cynara scolymus</i>	219
L. leaves by the eriophyid mite <i>Aceria neocynarae</i> of different artichoke cultivars.	
(28): Correlation coefficient between macro - and	
micronutrients and Aceria neocynarae population on	220
heavily infested leaves of different two artichoke cultivars.	220
(29):Anatomical characters on cuticle and lower epidermal layers	
of different tomato cultivars infested with A. lycopersici	229
mite	-

(30): Anatomical characters on cuticle and lower epidermal layers	
of different eggplant cultivars infested with A. melongenus	230
mite	
(31): Anatomical characters on cuticle and lower epidermal layers	
of two artichoke cultivars infested with A. neocynarae mite	231
(32): Trichome types of the lower surfaces of the different tomato	
cultivars.	238
(33): Trichome types on the lower surfaces of the different	
eggplant cultivars	239
(34): Trichome types on the lower surfaces of the two artichoke	
cultivars.	239
(35): Acaricides effect on eriophyid tomato russet mite	• = 0
Aculopslycopersici at Behaira Gov. within 21 days after application treatments during 2017 season.	250
(36): Acaricides effect on eriophyid egg-plant mite Aceria	
<i>melongenus</i> at Behaira Gov. within 21 days after application treatments during 2017 season.	251
(37): Acaricides effect on eriophyid artichoke mite Aceria	
<i>neocynarae</i> at Behaira Gov. within 21 days after application treatments during 2018 season.	252
(38). Duration (in days) of Different stages and oviposition rate	
of Aculops lycopersici surviving on leaves of three tomato	
cultivars (765, Safeera and 448) at constant temperatures	260
and 45 % R. H	
(39). Relationship between temperature and developmental rate	
of the tomato russet mite, Aculops lycopersici (Massee)	
females on three tomato cultivars (45% RH).	263
(40). Relationship between temperature and developmental rate	
of the tomato russet mite, Aculops lycopersici (Massee)	268
males on three tomato cultivars (45% RH).	

 (41). Life table parameters of the tomato russet mite <i>Aculops lycopersici</i> survived on leaves of three tomato cultivars (765, Safeera and 448) at constant temperatures and 45 % R. H. 	273
(42). Qualitative analysis of the spermatophores of the tomato russet mite <i>A.lycopersici</i> on three different tomato cultivars.	281
 (43). Duration (in days) of Different stages and oviposition rate of <i>Aceria melongenus</i> surviving on leaves of three eggplant cultivars (Batra, N-suma and Black beauty) at three constant temperatures and 45 % R. H. 	285
(44). Qualitative analysis of the spermatophores of the eggplant rust mite <i>A.melongenus</i> on three different eggplant cultivars.	287
(45). Relationship between temperature and developmental rate eggplant rust mite <i>Aceria melongenus</i> females on three eggplant cultivars (45% RH).	290
(46). Relationship between temperature and developmental rate of eggplant rust mite <i>Aceria melongenus</i> males on three eggplant cultivars (45% RH).	294
 (47). Life table parameters of the eggplant rust mite Aceria melongenus survived on leaves of three eggplant cultivars (Batra, N-suma and Black beauty) at three constant temperatures and 45 % R. H. 	300
 (48). Duration (in days) of Different stages and oviposition rate of <i>Aceria neocynarae</i> surviving on leaves of two artichoke cultivars (Egyptian and French) at three constant temperatures and 45 % R. H. 	307
(49). Qualitative analysis of the spermatophores of the artichoke rust mite <i>A.neocynarae</i> on two artichoke cultivars	310

(50). Relationship between temperature and developmental rate	
of artichoke rust mite Aceria neocynarae females on two	314
artichoke cultivars (45% RH).	_
(51). Relationship between temperature and developmental rate	
of artichoke rust mite Aceria neocynarae males on two	317
artichoke cultivars (45% RH).	
(52). Life table parameters of the artichoke rust mite Aceria	
neocynarae survived on leaves of two artichoke cultivars	
(Egyptian and French) at three constant temperatures and 45	321
% R. H.	
(53).Developmental times (days) of the predatory	
phytoseiid mite, Amblyseius swirskii reared on	327
tomato russet mite, A.lycopersici at different	321
constant temperatures and 45% R.H.	
(54).Relationship between temperature and developmental	
rate of A. swirskii females reared on tomato russet mite	329
A.lycopersici (45% R. H.).	
(55). Relationship between temperature and developmental	
rate of A. swirskii males reared on tomato russet mite	331
A.lycopersici (45% R. H.).	
(56). Life table parameters of the <i>A.swirskii</i> fed on the tomato russet mite, <i>A.lycopersici</i> at constant	225
tomato russet mite, <i>A.lycopersici</i> at constant temperatures and 45% R.H.	335
(57).Developmental times (days) of the predatory	
phytoseiid mite, Cydnoseius negevi reared on	341
eggplant rust mite, A.melongenus at different	571
constant temperatures and 45% R.H.	
(58). Life table parameters of the C.negevi fed on the	
eggplant rust mite, A.melongenus at constant	344
temperatures and 45% R.H.	

(59). Relationship between temperature and developmental	
rate of C. negevi females reared on eggplant rust mite,	347
A.melongenus (45% R. H.).	
(60). Relationship between temperature and developmental	
rate of C. negevi males reared on eggplant rust mite,	349
A.melongenus (45% R. H.).	

Figures No.	Page
(1): Tomato russet mite, Aculops lycopersici (Massee) (After Abou-Awad, 1976)	110
(2): Symptoms of eriophyid mite infestation on tomato 765 cultivar	114
 (3): Population trends of the tomato russet mite A.lycopersici and its predatory mite, A.swirskii associated with tomato cultivars in relation to temperature and relative humidity during two successive seasons (2016 / 2018) 	120
 (4): Percentage of Immature stages in the total population of the tomato russet mite <i>A.lycopersici</i> on tomato 765 cultivar during two successful seasons (2016 – 2018) 	122
(5): Symptoms of eriophyid mite infestation on Safeera tomato cultivar	125
 (6): Percentage of Immature stages in the total population of the tomato russet mite <i>A.lycopersici</i> on Safeera tomato cultivar during two successful seasons (2016 – 2018) 	129
(7): Symptoms of eriophyid mite infestation on tomato 765 cultivar	132
 (8): Percentage of Immature stages in the total population of the tomato russet mite <i>A.lycopersici</i> on tomato 448 cultivar during two successful seasons (2016 – 2018) 	136
(9): Egg-plant rust mite, <i>Aceria melongenus</i> (Zaher & Abou- Awad)(After Zaher & Abou-Awad, 1978 / 1979)	142
(10): Symptoms of eriophyid mite infestation on Batra Egg-plant cultivar	146

 (11): Population trends of the egg-plant mite A.melongenus and its predatory mite, C.negavi associated with egg-plant cultivars in relation to temperature and relative humidity during two successive seasons (2016 / 2018) 	152
 (12): Percentage of Immature stages in the total population of the egg-plant rust mite <i>A.melongenus</i> on Batra cultivar during two successful seasons (2016 – 2018) 	154
(13): Symptoms of eriophyid mite infestation on N-Suma Egg- plant cultivar	157
 (14): Percentage of Immature stages in the total population of the egg-plant rust mite <i>A.melongenus</i> on N-Suma cultivar during two successful seasons (2016 – 2018) 	161
(15): Symptoms of eriophyid mite infestation on Black beauty Egg-plant cultivar	165
 (16): Percentage of Immature stages in the total population of the egg-plant rust mite <i>A.melongenus</i> on Black beauty cultivar during two successful seasons (2016 – 2018) 	169
(17): Artichoke eriophyid mite, Aceria neocynarae (Keifer) (After Abou-Awad, 1976)	175
(18): Symptoms of eriophyid mite infestation on Egyptian Artichoke cultivar	177
 (19): Population trends of the artichoke eriophyid mite <i>A.neocynarae</i> associated with artichoke cultivars in relation to temperature and relative humidity during two successive seasons (2016 / 2018) 	181

 (20): Percentage of Immature stages in the total population of the artichoke eriophyid mite <i>A.neocynarae</i> on Egyptian artichoke cultivar during two successful seasons (2016 – 2018) 	183
(21): Symptoms of eriophyid mite infestation on French Artichoke cultivar	186
(22): Percentage of Immature stages in the total population of the artichoke eriophyid mite <i>A.neocynarae</i> on French artichoke cultivar during two successful seasons (2016 – 2018)	190
(23):Growth parameters for both healthy and heavily infested tomato cultivar leaves (765, Safeera and 448) by the tomato russet mite, <i>A.lycopersici</i>	200
(24): Macronutrients (N, P, K, Ca and Mg) % and total proteins in both healthy and heavily infested tomato cultivar leaves (765, Safeera and 448) by the tomato russet mite, <i>A.lycopersici</i>	201
(25): Micronutrients (Fe, Zn, Mn and Cu) ppm in both healthy and heavily infested tomato cultivars leaves (765, Safeera and 448) by the tomato russet mite, <i>A.lycopersici</i>	202
(26):Total phenols, sugars and carbohydrates in both healthy and heavily infested tomato cultivar leaves (765, Safeera and 448) by the tomato russet mite, <i>A.lycopersici</i>	203
(27): Growth parameters for both healthy and heavily infested egg-plant cultivar leaves (Batra, N-Suma and 165Black beauty) by the egg-plant rust mite, <i>A.melongenus</i>	209

(28): Macronutrients (N, P, K, Ca, Mg) % and total proteins in both healthy and heavily infested egg-plant cultivar leaves (Batra, N-Suma and Black beauty) by the egg-plant rust mite, <i>A.melongenus</i>	210
(29): Micronutrients (Fe, Zn, Mn and Cu) ppm in both healthy and heavily infested egg-plant cultivar leaves (Batra, N- Suma and Black beauty) by the egg-plant rust mite, <i>A.melongenus</i>	211
(30): Total phenols, sugars and carbohydrates in both healthy and heavily infested egg-plant cultivar leaves (Batra, N- Suma and Black beauty) by the egg-plant rust mite, <i>A.melongenus</i>	212
(31):Growth parameters for both healthy and heavily infested artichoke cultivars leaves (Egyptian and French) by the artichoke rust mite, <i>A.neocynarae</i>	221
(32): Macronutrients (N, P, K, Ca , Mg) % and total proteins in both healthy and heavily infested artichoke cultivars leaves (Egyptian and French) by the artichoke rust mite, <i>A.</i> <i>neocynarae</i>	222
(33): Micronutrients (Fe, Zn, Mn and Cu) ppm in both healthy and heavily infested artichoke cultivars leaves (Egyptian and French) by the artichoke rust mite, <i>A. neocynarae</i>	223
(34): Total phenols, sugars and carbohydrates in both healthy and heavily infested artichoke cultivars leaves (Egyptian and French) by the artichoke rust mite, <i>A. neocynarae</i>	224

(35): C =Cuticle layer, E = Epidermal layer and L.= Leaf Blade of tomato cultivars.	232
(36): C =Cuticle layer, E = Epidermal layer and L.= Leaf Blade of eggplant cultivars.	233
(37): C =Cuticle layer, E = Epidermal layer and L.= Leaf Blade of artichoke cultivars.	234
(38): Trichome types of the lower surfaces (A-C)	240
(39): Trichome types of the lower surfaces (A-C)	241
(40): Trichome types of the lower surfaces (A-C)	242
(41): Trichome types of the lower surfaces (A-C)	243
(42): Number of tomato russet mite <i>A.lycopersici</i> in treated tomato 765 leaves at Behaira Governorate in 2017 season	253
(43): Number of eriophyid egg-plant russet mite <i>A.melongenus</i> in treated Batra leaves at Behaira Governorate in 2017 season.	254
(44): Number of eriophyid artichoke russet mite <i>A.neocynarae</i> in treated Egyptian leaves at Behaira Governorate in 2018 season.	255
(45). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. lycopersici</i> (Massee) females reared on tomato-765 cultivar	265
 (46). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. lycopersici</i> (Massee) females reared on Safeera – tomato cultivar. 	266
(47). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. lycopersici</i> (Massee) females reared on tomato-448 cultivar	267

(48). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. lycopersici</i> (Massee) males reared on tomato-765 cultivar.	269
 (49). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. lycopersici</i> (Massee) males reared on Safeera – tomato cultivar. 	270
(50). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. lycopersici</i> (Massee) males reared on tomato-448 cultivar.	271
(51):Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.lycopersici</i> fed on tomato 765, cultivar at three constant temperatures degree.	274
(52): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.lycopersici</i> fed on Safeera tomato cultivar at three constant temperatures degree.	275
(53): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.lycopersici</i> fed on tomato 448, cultivar at three constant temperatures degree.	276
(54). Spermatophores of the tomato russet mite <i>A.lycopersici</i> on tomato leaves.	280
(55). Spermatophores of the eggplant rust mite <i>A.melongenus</i> on tomato leaves.	286
(56). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. melongenus</i> females reared on eggplant Batra cultivar	291
(57). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. melongenus</i> females reared on eggplant N-suma cultivar	292
(58). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. melongenus</i> females reared on eggplant Black beauty cultivar	293
(59). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. melongenus</i> males reared on eggplant Batra cultivar	295

(60). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. melongenus</i> males reared on eggplant N-suma cultivar.	296
(61). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. melongenus</i> males reared on eggplant Black beauty cultivar.	297
(62): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.melongenus</i> fed on Batra eggplant cultivar at three constant temperatures degree.	301
(63): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.melongenus</i> fed on N-suma eggplant cultivar at three constant temperatures degree.	302
(64): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.melongenus</i> fed on Black beauty eggplant cultivar at three constant temperatures degree.	303
(65). Spermatophores of the artichoke rust mite <i>A.neocynarae</i> on artichoke leaves.	311
(66). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. neocynarae</i> females reared on artichoke Egyptian cultivar	315
(67). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. neocynarae</i> females reared on artichoke French cultivar	316
(68). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. neocynarae</i> males reared on artichoke Egyptian cultivar	318
(69). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. neocynarae</i> males reared on artichoke French cultivar	319
(70): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.neocynarae</i> fed on Egyptian artichoke cultivar at three constant temperatures degree.	322

]
(71): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.neocynarae</i> fed on French artichoke cultivar at three constant temperatures degree.	323
(72). Amblyseius swirskii, Athias – Henriot	326
(73). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. swirskii</i> females fed on tomato russet mite <i>A.lycopersici</i>	330
(74). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>A. swirskii</i> males fed on tomato russet mite <i>A.lycopersici</i>	332
(75): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.swirskii</i> on <i>A. lycopersici</i> at three constant temperatures degree.	336
(76): Cydnoseius negevi (Swirski & Amitai)	339
(77): Age-specific fecundity (Mx) and survivorship (Lx) of <i>A.swirskii</i> on <i>C. negevi</i> at three constant temperatures degree.	345
(78). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>C. negevi</i> females fed on eggplant rust mite <i>A.melongenus</i> .	348
(79). Linear regression analysis of temperature versus developmental rate, degree – day's requirements, and minimum developmental thresholds of <i>C. negevi</i> males fed on eggplant rust mite <i>A.melongenus</i> .	350