Suez Canal University Faculty of Science Ismailia

Biochemical and Physiological Impacts of Some Nanoparticles For Using As Alternative Insecticides

A Thesis Submitted by Fouda Abdou Ramadan Abd Al-Aal

> M.Sc., in Chemistry (2014)

For

The Degree of Doctor of Philosophy In Science Ph.D. in Chemistry

IN Chemistry (Inorganic and Analytical Chemistry)

> **To** Chemistry Department Faculty of Science Suez Canal University Ismailia (2020)

CONTENTES

Pages

List of Tables	i
List of Figures	ii
Abbreviations	v
Abstract	vii

CHAPTER I: INTRODUCTION AND LITERATURE REVIEW

I.1. Introduction	1
I. 2. Literature review	3
I.2.1. Nanotechnology	3
I.2.2. Nanomaterials	4
I.2.3. Types of nanomaterials	4
I.2.4. Nanoparticles	5
I.2.5. Copper oxide nanoparticles (CuO NPs)	6
I.2.6. Zinc oxide nanoparticles (ZnO NPs)	10
I.2.7. The exploitation of nanoparticles as agrochemicals	18
I.2.7.1. As fertilizers	18
I.2.7.2. As Anti-microbial agents	20
I.2.7.3. As clean up and remediation agents	21
I.2.7.4. As alternative pesticides	23
I.2.8. The biological effect of nanoparticles	25
I.2.8.1.Toxicological effect of nanoparticles	26
I.2.8.2.Biochemical effect of nanoparticles	28
I.2.8.3. Effect of nanoparticles on DNA	32

I.2.9. The desert locust; Schistocerca gregaria a destructive	
agricultural pest	33
I.2.9.1. Desert locust's Systematic Management Strategies	34
I.2.9.2. Desert locust's managements by pesticides	35
I.2.9.3. Innovative methods in control desert locust	35

Aim of the work

38

CHAPTER II: Materials and Methods

II.1. Materials and solutions	39
II.2. Chemical preparation and characterization of nanoparticles	39
II.2.1. Synthesis of CuO nanoparticles by chemical ppt. method	39
II.2.2. Synthesis of ZnO nanoparticles	42
II.3. Characterization of prepared CuO and ZnO nanoparticles	43
II.4. Bioassay of prepared CuO and ZnO nanoparticles on desert	
locust, Schistocerca gregaria	48
II.4.1. Maintenance of Schistocerca gregaria culture	48
II.4.2. Toxicological investigations	49
II.4.3. Biological investigations	49
II.4.4. Biochemical investigations	49
II.4.4.1. Determination of acetyl Cholinesterase (AchE)	50
II.4.4.2. Determination of Glutathione. S. Transferase (GST)	50
II.4.4.3. Determination of Phenol oxidase	51
II.4.4.4. Estimation of Catalase Enzyme	51
II.4.4.5. Activity determination of superoxide dismutase (SOD)	52
II.4.4.6. Malondialdhyde (lipid peroxide)	52
II.5. Genotoxicity and DNA comet assay in Schistocerca gregaria	
brain cells	53

II.6. Statistical analysis	57
CHAPTER III: Results and Discussion	
III.1. Preparation of Nanoparticles	58
III.1.1. Copper oxide nanoparticles	58
III.1.2. Zinc oxide nanoparticles	58
III.1.3. Characterization of the synthesized nanoparticles	59
III.1.3.1. Ultraviolet-Visible (UV–Vis) Spectral Analysis	59
III.1.3.2. Scanning Electron Microscopy (SEM)	61
III.1.3.3. Transmission Electron Microscopy (TEM)	63
III.1.3.4. Fourier Transform Infrared (FTIR)	66
III.1.3.5. X-ray diffraction (XRD) and EDAX analysis	68
III.2. Bioassay of prepared nanoparticles	72
III.2.1. Toxicological effect	72
III.2.2. Biological effect	75
III.2.2.1. Effect of prepared NPs on nymphal mortality	75
III.2.2.2. Effect of prepared nanoparticles nymphal duration	78
III.2.2.3. Effect of prepared NPs on nymphal development	79
III.2.2.4. Effect of prepared nanoparticles on adult emergence	80
III.2.2.5. Effect of prepared NPs on adult morphogenesis	82
III.2.2.6. Effects of prepared NPs on phase transition	84
III.2.2.7. Effects prepared NPs on duration and maturation period	84
III.3.3. Biochemical effect	85
III.3.3.1. Acetylcholine esterase activity	86

III.3.3.2. Phenol oxidase enzyme activity	88
III.3.3.3. Glutathione-S-transferase (GST) activity	89
III.3.3.4. Lipid peroxidation as MDA	91
III.3.3.5. Catalase activity	92
III.3.3.6. Super oxidase dismutase (SOD) activity	93
III.3.4. Genotoxical effect and DNA damages	95

CHAPTER IV: Summary & Conclusions

Summary	100
Conclusions	105
References	106
Arabic Summary	١

List of Tables

Table No	Title	Page
INU.		No.
1	LC ₅₀ of CuO NPs &ZnO NPs against 4 th nymphal instar of Schistocerca gregaria after 7 days	73
2	LT ₅₀ of CuO NPs & ZnO NPs sub-lethal concentration of 0.25% against 4 th instar of <i>Schistocerca gregaria</i>	74
3	Effect of 0.25% sublethal concentration of CuO, ZnO NPs on nymphal biological aspects. of <i>Schistocerca gregaria</i> treated at 4^{th} and 5^{th} instare.	77
4	Effect of 0.25% sublethal concentration of CuO, ZnO NPs on adults biological aspects and performance of <i>Schistocerca</i> . <i>gregaria</i> treated with 4 th instar.	81
5	Effect of sub-lethal concentration CuO, ZnO NPs on activity of AChE., Phenol oxidase and Glutathione-S-transferase in 4 th nymphal instar of <i>Schistocerca gregaria</i> after 48 hrs	87
6	Effect of sub lethal concentration of CuO &ZnO NPs on activity of Peroxidase, Catalase & Super oxidase dismutase on 4 th nymphal instar of <i>Shistocerca gregaria</i> after 48 hrs	91
7	Comet parameters on brain cells of <i>Shistocerca gregaria</i> treated with CuO NPs & ZnO NPs	97

List of Figures

Figures No.	Title	Page No.
4		_
1	various structures of nanomaterials	5
2	Preparation steps of CuO NPs until final product CuO	41
3	CuO nanoparticles obtained after calcination	42
4	ZnO nanoparticles obtained after calcination	43
5	UV- Vis. Spectrophotometer	44
6	Fourier transform infrared Spectrophotometer	44
7	X-Ray diffractometer	45
8	Scanning electron microscope with EDX	46
9	Transmission electron microscope	47
10	Dynamic light scattering instrument	47
11	Steps of Comet assay experiment	55
12	Visual classification of comets suggested (a), schematic of visual classification of comets (b)	56
13	UV-visible spectra of CuO nanoparticles	59
14	UV-visible spectra of ZnO nanoparticles	61
15	Scanning electron microscope image of CuO nanoparticles	62
16	Scanning electron microscope image of ZnO nanoparticles	63
17	Transmission electron microscope image of CuO nanoparticles	64

.8	Size distribution histogram of the synthesized CuO nanoparticles
9	Transmission electron microscope image of synthesized ZnO nanoparticles
20	Size distribution histogram of the synthesized ZnO
	nanoparticles
1	FTIR spectra of the CuO nanoparticles.
2	FTIR spectra of the ZnO nanoparticles
3	X-ray diffraction patterns of synthesized CuO NPs
ļ	EDX-diffraction patterns of synthesized CuO nanoparticles
	XRD pattern of the synthesized Zinc oxide nanoparticles
	EDX-diffraction patterns of synthesized ZnO nanoparticles
,	Toxicity line propit of CuO & ZnO NPs against 4 th nymphal instar of <i>Shistocereca gregaria</i> after 7 days
	Death symptoms of <i>Schistocerca gregaria</i> treated with CuO nanoparticles (a) and ZnO nanoparticles (b)
	Effect of CuO & ZnO nanoparticles on nymphal mortality of <i>Schistocerca grigaria</i> treated
	Effect of CuO & ZnO nanoparticles on 4 th and 5 th nymphal duration period.
	Effect of CuO & ZnO nanoparticles on 4 th and 5 th deformation percentage
	Nymphal deformation and deficient-molting in nymphes of
	Schistocerca grigaria treated in 4 th nymphal instar with
	CuO& ZnO nanoparticles
	Effect of concentration (0.25%) of CuO & ZnO nanoparticles on adults' emergance of <i>Schistocerca grigaria</i> treated
	Effects of prepared nanoparticles on phase transition and

	nymphal deformation
35	Adults deformation of <i>Schistocerca grigaria</i> treated in 4 th nymphal instar with CuO, ZnO nanoparticles
36	Phase transition of <i>Schistocerca grigaria</i> treated in 4 th nymphal instar with CuO, ZnO nanoparticles
37	Effects of CuO & ZnO nanoparticles on longevity and maturation period
38	Effect of CuO and ZnO nanoparticles on activity of AChE. enzyme in 4 th nymphal instar of <i>Shistocerca</i> gregaria
39	Effect of CuO and ZnO NPs on activity of phenol oxidase enzyme in 4 th nymphal instar of <i>Shistocerca gregaria</i>
40	Effect of CuO and ZnO NPs on activity of GST enzyme in 4 th nymphal instar of <i>Shistocerca gregaria</i>
41	Effect of CuO & ZnO nanoparticles on lipid peroxidation in 4 th nymphal instar of <i>Shistocerca gregaria</i>
42	Effect of CuO & ZnO nanoparticles on activity of catalase enzyme in 4 th nymphal instar of <i>Shistocerca gregaria</i>
43	Effect of CuO NPs and ZnO NPs on activity of SOD enzyme in 4 th nymphal instar of <i>Shistocerca gregaria</i>
44	Classes by image analysis fluorescence in 4 th nymphal instar of <i>Shistocerca gregaria</i> . treated with CuO NPs and ZnO nanoparticles
45	DNA percentages in head and tail of comet as a parameter of DNA damage.

IV-SUMMARY Summary

The current study aimed at preparing CuO and ZnO nanoparticles that can be used as alternative effective, ecofriendly and economic insecticides against the 4th instar of *Schistocereca gregaria* as model insect and monitoring physiological, biochemical and ultra structural changes resulted after treatments with the prepared CuO and ZnO nanoparticles.

Standard procedures were followed to synthesize CuO NPs and ZnO NPs via chemical precipitation method and calcination method respectively. The formation of ZnO and CuO nanoparticles were investigated and confirmed by instrumental analysis and physical measurements such as Ultra violet-visible Spectrophotometer (UV-Vis), Fourier-Transform Infrared (FTIR), X-Ray diffraction analysis, Energy Dispersive X-ray (EDX),Scanning Electron Microscope (SEM), Dynamic light scattering (DLS) and Transmission Electron Microscope Imaging (TEM).

The size distribution of CuO nanoparticles was around 35 nm the actual size of nanoparticles was estimated from the TEM micrograph. Most of the nanoparticles have an avarege size of 20 nm and are nearly uniform in size.

The surface area measured by BET showed that the surface area of CuO NPs is $23m^2/g$.

The TEM data of ZnO NPs showed that more than 50% of particles were in range (7 nm up to 35 nm) and the largest percentage was at a size of 35nm. Also the particles are found to be spherical. The surface area measured by BET showed that the surface area of ZnO NPs is $28 \text{ m}^2/\text{g}$.

Toxicological investigations

The insecticidal efficacy of synthesized ZnO NPs and CuO NPs against the 4th instar of *Schistocerca gregaria* was demonstrated after 7 days of exposure to different concentrations. The two used compounds stated satisfying toxicity levels. CuO NPs achieved highly toxicity compared with ZnO NPs throughout the study and examination days. Where the results were recorded LC₅₀ for CuO NPs (0.487%) and ZnO NPs LC₅₀ was (9.822%). These results stated that more toxicity for CuO NPs than ZnO NPs.

The LT_{50} of sub-lethal concentration (0.25%) of CuO NPs and ZnO NPS against 4th nymphs recorded after 10.994, 21.148 days, respectively. Furthermore, that clued the CuO NPs considered an acute toxicant while ZnO NPs maybe has chronic toxicity. These results lead to those ZnO nanoparticles may result in a residual effect more than CuO nanoparticles.

Biological investigations

The effect of sub-lethal concentration of NPs on nymphal mortality was initially observed during 4th instar where both ZnO NPs and CuO NPs resulted in considerable mortality compared to untreated controls. Mortality rates attained 10.34%, 16.67% respectively, whereas the residual mortality recorded during the 5th instar didn't exceed 12% for CuO NPs and 4.4% for ZnO NPs compared to untreated controls

Furthermore, the effect of NPs on Nymphal duration was verified also. At ZnO NPs treatment the duration of nymphal instars was longer as insects developed into a more advanced stage. While exposure to CuO NPs resulted in reversed findings on the duration of nymphal instars

Additional findings were reported that nymphal development was affected by treatments with ZnO NPs which revealed a notable deficient molting during development from 4th instar to 5th instar reached 12.4% of survival nymphs likewise, 18.5% deficient molting recorded in development from 5th to adult stage. No deficient development was recorded with CuO NPs treatment.

Results reveal the effects of the two NPs on the nymphal metamorphosis into the adult stage after treatment of 4th instar nymphs whereas the adult emergence decreased significantly with nanoZnO treatment recording 82.20% when the nanoCuO didn't show any effects.

In connection with the impaired adult morphogenesis of *S. gregaria* treated by the two tested nanoparticles only 16.66 % adult deformities were recorded at the treatment of ZnO NPs but it failed to affect the morphogenesis at other (CuO NPs) as well as the two controls.

The treatment of 4th instar nymphs with ZnO NPs an important solitary effect was exhibited because 13.33% of the completely emerged nymphes appeared with some symptoms of the solitary phase as well as the albino phase. Neither solitary nor albino effects were recorded after the treatment of 4th instar nymphs by CuO NPs and controls.

Data exiguously revealed that ZnO NPs prohibited the maturation of *S*. *gregaria* thought remarkably prolonged duration (27.305 day), On the other hand, CuO NPs treatment slightly prohibited with non-significant prolonged duration (25.882 days) against positive control with tween 0.1%. (25.603 days).

Biochemical effect

To understand the mechanism of the toxic effect of tested nanoparticles Production of specific ROS and enzymes involved in the occurrence of oxidative stress were evaluated.

The activity of AChE. enzyme showed a marked decrease in both tested nanoparticle where the enzyme activity with ZnO NPs reached (4.781 U/gm), and (9.41 U/gm) with CuO NPs treatment. Comparing to the negative and positive control that recorded (22.48, 15.06 U/gm.)

Phenol oxidase enzyme activity has increased significantly in both treatments as well as the positive control with tween that recorded (2048U/g). Where both ZnO NPs recorded result (2352.2U/g) and CuO NPs (3734.02U/g) respectively compared with negative control (484.76U/g)

GST activity for ZnO NPs treatment was mildly increased compared to Control-tween (0.01%) as shown in the result table (447.35, 341.57U/g) respectively, where CuO NPs effect on the same enzyme was more than four-fold compared to a positive control (1430.90, 341.57U/g).

Moreover, the increasing of lipid peroxidation were stated for the two compounds CuO NPs (228.41nmol/g) and ZnO NPs (124.39nmol/g)

Also, the results of the activity of the CAT enzyme decreased in all the groups. ZnO NPs (248.35U/g) compared to the negative and positive control (774.45, 443U/g) respectively, on the contrary CuO NPs.

On the other hand, SOD activity was affected positively by CuO NPs more than ZnO NPs as a clear difference between the two nanocompounds compared to control samples especially negative control

Genotoxic effects and DNA damages

The results of the comet assay for DNA strand breaks in the nuclei of the brain cells of *schistocerica gregaria* indicated a significant increase in DNA damage in the two treated samples by two prepared nanocompounds as compared to the reference positive either negative samples

Data revealed that the numbers of DNA damaged cells categorized in class (3, 4, and 5) were also greater in the case of the sample treated with CuO NPs compared to the reference ones.

The second nanocompounds (ZnO NPs) showed significant damage for nuclei and so apoptosis for cells but less than copper oxide nanoparticles.

Finally, the author likes to confirm that the findings will throw some light on the effect of using nanoparticles as alternatives to conventional insecticides, besides its usage as fertilizers.