

Benha University Faculty of Veterinary Medicine Department of Bacteriology, Immunology and Mycology

Effects Of Nanoparticles On *Escherichia Coli* Causing Diarrhea In Ruminants

A thesis Presented

By

Wafaa Sayed Ahmed Mohamed El-Shazly (B.V.Sc., Kafr El-Sheikh University, (2009) (M.V.Sc., Kafr El-Sheikh University, (2014)

Under supervision of

Prof. Ashraf Awaad Abd El-Tawab

Prof& Head of Bacteriology, Immunology and Mycology department Faculty of Veterinary Medicine Benha University

Prof. Amged Ahmed Abu-ElEla

Chief Researcher of Animal Production Research Institute El- Gimmeza station

Ass. Prof. Fatma Ibrahim Abd-Allah El-Hofy

Ass. Prof. of Bacteriology, Immunology and Mycology department Faculty of Veterinary Medicine Benha University

For

The degree of Ph. D in Veterinary Science (Bacteriology, Immunology and Mycology) Faculty of Veterinary Medicine Benha University

(2020)

Contents

No.	Title	Page
	Content	i
	List of Tables	iii
	List of figures	iv
	List of abbreviations	vi
1.	Introduction	1
2.	Review of literature	6
2.1.	Incidence of <i>Escherichia coli</i> in diarrheic ruminants.	6
2.2.	Serotyping of Escherichia coli.	8
2.3.	Antimicrobial sensitivity testing of <i>E.coli</i> .	10
2.4.	What are nanoparticles?	12
2.5.	Classification of nanoparticles.	13
2.6.	Synthesis of nanoparticles.	14
2.7.	Application of nanoparticles.	16
2.8.	Antibacterial effect of metal-based nanoparticles.	18
2.8.1.	Antibacterial activity of ZNO nanoparticles.	20
2.8.2.	Antibacterial activity of Tio2nanoparticles.	22
2.8.3.	Antibacterial activity of silver doped-nanoparticles.	23
2.9.	Mechanisms of antibacterial activity of nanoparticles	24
3.	Material and Methods	28
3.1	Materials	28
3.1.1.	Samples for bacterial isolation.	28
3.1.2	Media used.	28
3.1.2.7.	Reagents and solution	31
3.1.2.7.1	Stains	31
3.1.3.	Materials used for serotyping of <i>E.coli</i> isolates	33
3.1.4.	Equipments used for isolation and identification.	34
3.15.	Materials used for antbiotic sensitivity test.	34
3.1.6	Synthesis of TiO_2 , ZnO, Ag-doped TiO_2 and Ag-	36
3.1.7.	Apparatus and Instruments	36
3.1.8.	Materials used for MIC determination .	37

3.2	Methods	39
3.2.1.	Sample collection	39
3.2.2	Bacteriological examination of the samples	39
3.2.3.	In vitro virulence assay of suspected <i>E.coli</i> isolates	42
3.2.4.	Antimicrobial susceptibility testing of isolated <i>E.coli</i>	44
3.2.5.	Serological identification of <i>E.coli</i> isolates	45
3.2.6.	Synthesis of TiO ₂ , ZnO, Ag-doped TiO ₂ and Ag-	46
3.2.7	Characterization of ZnO nanoparticles	47
3.2.8.	Antibacterial Activity Test of the prepared Zno ,TiO ₂	48
3.2.9.	Determination of the MIC.	48
3.2.10.	Transmission electron microscope	49
4.	Results	51
4.1.	Incidence of <i>E. coli</i> in diarrheic cases of calves,	51
4.2 <u>.</u>	Identification of <i>E.coli</i> Isolates	51
4.2.3.	Biochemical identification of <i>E.coli</i> isolates	53
4.3.	Antibiotic sensetivity of 48 E. coli isolates	54
4.4.	Serotyping of MDR pathogenic <i>E. coli</i> isolates	55
4.5.	Nano Material Characterization	55
4.6.	Antibacterial activity of TiO ₂ , ZnO, Ag-doped TiO ₂	59
	and Ag-doped ZnO Nanoparticles:	
4.7	MIC Of Tio2, Zno, Ag-Doped TiO ₂ and Ag-Doped	61
	Zno nanoparticles On <i>E. coli</i> Strains:	
4.8	Transmission Electron Microscope	63
5.	Discussion	65
6.	Conclusion	73
7.	Summary	75
8.	Referance	78
9.	Arabic Summary	1

TableNo.	Title	Page
1	Antisera used in serological identification of <i>E. coli</i>	33
2	The antibiotic disks used in vitro sensitivity test for	34
	the isolated E. coli strains.	
3	Biochemical identification of Escherichia coli	42
4	Zone of inhibition of the antibiotics used in vitro sensitivity test for the isolated <i>E. coli</i> strains	45
5	Prevalence of <i>E. coli</i> isolated from fecal sample of diarrheic cases.	51
6	Biochemical reaction of E. coli isolates	53
7	Antibiotic sensitivity for the 48 pathogenic <i>E. coli</i> isolates by disc diffusion method	55
8	Serotyping of MDR pathogenic E. coli isolates	55
9	Antibacterial Activity Of Zno, Tio2, Zno Doped	60
	Ag and Ag-Doped Tio_2 NPS Against Isolated <i>E. coli</i> Strains.	
10	MIC of $_{TiO2}$, ZnO, Ag-doped TiO ₂ and Ag-doped ZnO NPS on <i>E.coli</i> strains	61

List of Figures

No. of figures	Title	Page
1	<i>E. coli</i> on Mac Conkony agar.	52
2	<i>E. coli</i> on EMB media .	52
3	<i>E. coli</i> On Congo red agar.	53
4	<i>E. coli</i> On blood agar.	53
5	Indol test for <i>E. coli</i> .	54
6	TSI test for <i>E.coli</i> .	54
7	XRD pattern ZnO Nps.	56
8	XRD pattern TiO2 Nps.	56
9	XRD pattern Ag-doped ZnO Nps.	57
10	XRD pattern Ag- doped TiO ₂ Nps .	57
10	TEM analysis of ZnO Nps.	58
11	TEM analysis of TiO2 Nps.	58
12	TEM analysis of Ag doped Zno Nps.	58
13 14	TEM analysis of Ag-doped TiO2 Nps.	59
14	Antibacterial activity of Ag-Doped Zno nanoparticles	60
13	mg /ml on <i>E. coli</i> .	00
16	Antibacterial activity of Ag-Doped Tio ₂ nanoparticles	60
10	mg/ml on <i>E. coli</i> .	00
17	MIC of ZnO Nps .	61
17	MIC of Ag-doped ZnO Nps.	62
19	MIC of TiO_2 Nps.	62
20	MIC of MIC of Ag-doped TiO ₂ Nps.	62
20	TEM analyses of the morphological change of bacterial	63
~ 1	cells induced by the treatment of <i>E. coli</i> strains by	00
	synthesized NPS.	

Contents

No.	Title	Page
	Content	i
	List of Tables	iii
	List of figures	iv
	List of abbreviations	vi
1.	Introduction	1
2.	Review of literature	6
2.1.	Incidence of <i>Escherichia coli</i> in diarrheic ruminants.	6
2.2.	Serotyping of Escherichia coli.	8
2.3.	Antimicrobial sensitivity testing of <i>E.coli</i> .	10
2.4.	What are nanoparticles?	12
2.5.	Classification of nanoparticles.	13
2.6.	Synthesis of nanoparticles.	14
2.7.	Application of nanoparticles.	16
2.8.	Antibacterial effect of metal-based nanoparticles.	18
2.8.1.	Antibacterial activity of ZNO nanoparticles.	20
2.8.2.	Antibacterial activity of Tio2nanoparticles.	22
2.8.3.	Antibacterial activity of silver doped-nanoparticles.	23
2.9.	Mechanisms of antibacterial activity of nanoparticles	24
3.	Material and Methods	28
3.1	Materials	28
3.1.1.	Samples for bacterial isolation.	28
3.1.2	Media used.	28
3.1.2.7.	Reagents and solution	31
3.1.2.7.1	Stains	31
3.1.3.	Materials used for serotyping of <i>E.coli</i> isolates	33
3.1.4.	Equipments used for isolation and identification.	34
3.15.	Materials used for antbiotic sensitivity test.	34
3.1.6	Synthesis of TiO_2 , ZnO, Ag-doped TiO_2 and Ag-	36
3.1.7.	Apparatus and Instruments	36
3.1.8.	Materials used for MIC determination .	37

3.2	Methods	39
3.2.1.	Sample collection	39
3.2.2	Bacteriological examination of the samples	39
3.2.3.	In vitro virulence assay of suspected <i>E.coli</i> isolates	42
3.2.4.	Antimicrobial susceptibility testing of isolated <i>E.coli</i>	44
3.2.5.	Serological identification of <i>E.coli</i> isolates	45
3.2.6.	Synthesis of TiO ₂ , ZnO, Ag-doped TiO ₂ and Ag-	46
3.2.7	Characterization of ZnO nanoparticles	47
3.2.8.	Antibacterial Activity Test of the prepared Zno ,TiO ₂	48
3.2.9.	Determination of the MIC.	48
3.2.10.	Transmission electron microscope	49
4.	Results	51
4.1.	Incidence of <i>E. coli</i> in diarrheic cases of calves,	51
4.2 <u>.</u>	Identification of <i>E.coli</i> Isolates	51
4.2.3.	Biochemical identification of <i>E.coli</i> isolates	53
4.3.	Antibiotic sensetivity of 48 E. coli isolates	54
4.4.	Serotyping of MDR pathogenic <i>E. coli</i> isolates	55
4.5.	Nano Material Characterization	55
4.6.	Antibacterial activity of TiO ₂ , ZnO, Ag-doped TiO ₂	59
	and Ag-doped ZnO Nanoparticles:	
4.7	MIC Of Tio2, Zno, Ag-Doped TiO ₂ and Ag-Doped	61
	Zno nanoparticles On <i>E. coli</i> Strains:	
4.8	Transmission Electron Microscope	63
5.	Discussion	65
6.	Conclusion	73
7.	Summary	75
8.	Referance	78
9.	Arabic Summary	1

TableNo.	Title	Page
1	Antisera used in serological identification of <i>E. coli</i>	33
2	The antibiotic disks used in vitro sensitivity test for	34
	the isolated E. coli strains.	
3	Biochemical identification of Escherichia coli	42
4	Zone of inhibition of the antibiotics used in vitro sensitivity test for the isolated <i>E. coli</i> strains	45
5	Prevalence of <i>E. coli</i> isolated from fecal sample of diarrheic cases.	51
6	Biochemical reaction of E. coli isolates	53
7	Antibiotic sensitivity for the 48 pathogenic <i>E. coli</i> isolates by disc diffusion method	55
8	Serotyping of MDR pathogenic E. coli isolates	55
9	Antibacterial Activity Of Zno, Tio2, Zno Doped	60
	Ag and Ag-Doped Tio_2 NPS Against Isolated <i>E. coli</i> Strains.	
10	MIC of $_{TiO2}$, ZnO, Ag-doped TiO ₂ and Ag-doped ZnO NPS on <i>E.coli</i> strains	61

List of Figures

No. of figures	Title	Page
1	<i>E. coli</i> on Mac Conkony agar.	52
2	<i>E. coli</i> on EMB media .	52
3	<i>E. coli</i> On Congo red agar.	53
4	<i>E. coli</i> On blood agar.	53
5	Indol test for <i>E. coli</i> .	54
6	TSI test for <i>E.coli</i> .	54
7	XRD pattern ZnO Nps.	56
8	XRD pattern TiO2 Nps.	56
9	XRD pattern Ag-doped ZnO Nps.	57
10	XRD pattern Ag- doped TiO ₂ Nps .	57
10	TEM analysis of ZnO Nps.	58
11	TEM analysis of TiO2 Nps.	58
12	TEM analysis of Ag doped Zno Nps.	58
13 14	TEM analysis of Ag-doped TiO2 Nps.	59
14	Antibacterial activity of Ag-Doped Zno nanoparticles	60
13	mg /ml on <i>E. coli</i> .	00
16	Antibacterial activity of Ag-Doped Tio ₂ nanoparticles	60
10	mg/ml on <i>E. coli</i> .	00
17	MIC of ZnO Nps .	61
17	MIC of Ag-doped ZnO Nps.	62
19	MIC of TiO_2 Nps.	62
20	MIC of MIC of Ag-doped TiO ₂ Nps.	62
20	TEM analyses of the morphological change of bacterial	63
~ 1	cells induced by the treatment of <i>E. coli</i> strains by	00
	synthesized NPS.	

7- Summary

Emerging infectious diseases and the increase in incidence of drug resistance among pathogenic bacteria have made the search for new antimicrobials inevitable. In the current situation, one of the most promising and novel therapeutic agents are the nanoparticles. The unique physiochemical properties of the nanoparticles combined with the growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles and their potential application as antimicrobials.

Among the various metal oxides studied for their antibacterial activity, titanium dioxide and zinc oxide nanoparticles have been found to be highly toxic. Moreover, their stability under harsh processing conditions and relatively low toxicity combined with the potent antimicrobial properties favors their application as antimicrobials. Many studies have shown that some NPs made of metal oxides, such as ZnO NPs, have selective toxicity to bacteria and only exhibit minimal effect on human cells, which recommend their prospective uses in agricultural and food industries.

Therefore, this study was designed to throw spot lights upon the effect of these NPs on pathogenic multiple drug resistant *E. coli* causing diarrhea.

- 1. In this study, *E. coli* was isolated from 150 fecal samples collected randomly from diarrheic calves (n=35), lambs (n=35) and goat kids (n=80) up to 3months from Gimmeza animal production researches station farm. Agriculture Research Centre (ARC).and the result were summarized as following:
- Eighty two *E. coli* isolates were isolated from 150 fecal samples with incidence (54.6%=82/150).,as follow the number of *E. coli* isolates from calves was 28 with an incidence 80%, from goat kids was 39

with an incidence 48.7% and from lambs was 15 with an incidence 42.8%.

- 3. The number of pathogenic *E. coli* was 48 with an incidence 58.5 % and 41.5% nonpathogenic ones.
- 4. Out of 48 pathogenic *E. coli* isolates 85% were resistant to Oxytetracycline (OT) followed by Ampcillin (AMP) 83%, Chloramphenicol (CHL) 60% and cefotaxime (CTX) 20% but no resistance to Amoxicillin+clavulinic acid(AMC), Ciprofloxacin(CIP), Gentamicin (GN) and Erythromycin (ER). Among those *E .coli* isolates, 10 isolates were found to be multi-drug resistant to 3 or more antibiotic groups.
- 5. Serogrouping of the 10 MDR *E. coli* isolates revealed that the serogroups were *E. coli* O_{157} :H₇(4/10) isolated from calves (n=2) and goat kids (n=2), and *E. coli* O_{125} three (3/10) isolated from calves (n=2) and lambs (n=1) and three O_{44} (3/10) isolated from goat kids (n=2) and sheep (n=1).
- 6. ZnO, TiO₂, Ag-TiO₂ and Ag-ZnO were prepared via the sol-gel method.
- 7. The synthesized NPs were characterized using XRD and TEM. XRD pattern of the prepared ZnO and Ag-doped ZnO powder revealed the hexagonal wurtzite phase With size equal to 26 nm and 19 nm respectively, But TiO_2 has anatase phase with size equal 32nm and Ag-doped TiO_2 has both rutile and anatase phases with size equal 15nm
- 8. TEM analysis showing the particles are scattered in the case of ZnO and Ag-doped ZnO nanoparticles (Ag NPs<10 nm), ZnO nanoparticles (15–50 nm) and showed the particles are irregular in

shape, agglomerated in the case of TiO_2 whereas they are scattered in the case of Ag-doped TiO2 Nps, particles size about (25–60 nm).

- 9. The antibacterial results showed that the low antibacterial activities of pure TiO_2 and ZnO were significantly improved by the incorporation of silver.
- 10.Ag-doped TiO_2 treatments showed the most significant antibacterial activities against *E. coli* followed by Ag-doped ZnO then TiO_2 , while ZnO have the lowest antibacterial activity.
- 11. The synthesized NPs found to be effective against all *E. coli* strains with MIC of ZnO occurred at $(31,25\mu g/ml)$ for O_{157H7} , while MIC of TiO₂ occurred at $(15,6 \ \mu g/ml)$ for O_{44} , MIC of Ag-doped ZnO occurred at $(7,8 \ \mu g/ml)$ for and MIC of Ag-doped TiO2 showed at 3,9 $\mu g/ml$ for (ATCC25922).
- 12.TEM analyses was used to assess the morphological change of bacterial cells induced by the treatment of ZnO, TiO₂, Ag doped ZnO, Ag doped TiO₂ NPS .The leakage of intracellular contents and membrane disorganization were observed in bacterial cells treated with mentioned NPs.