TAXONOMICAL AND ECOLOGICAL STUDIES ON SOME MEALYBUG SPECIES INFESTING FRUIT TREES AND ORNAMENTAL PLANTS IN EGYPT [Hemiptera: Sternorrhyncha Pseudococcidae]

By

DALIA NABIL ZAKI

B.Sc. Agri. Sc., Fac. of Agric. (Entomology), Cairo Univ., 1992 M.Sc. Agri. Sc., Fac. of Agric. (Entomology), Ain Shams Univ., 2013

> A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Science (Economic Entomology)

Department of Plant Protection Faculty of Agricultural Ain Shams University

CONTENT

	Page
LIST OF TABLES	
LIST OF FIGURES	
Part I : TAXONOMICAL STUDIES	1
1.INRTODUCTION	1
2.REVIEW OF LITERATURE	3
A. Traditional Taxonomy	3
B. Molecular Taxonomy	9
3. MATERIAL AND METHODS	22
A- Traditional Taxonomy	22
1- Collecting Materials	22
2- Preparing permanent mounted slides for identification	
procedure	22
3- Identification Procedures	23
4- Host plants, distribution and synonymy lists	23
5- Similarity matrix and dendrogram	24
B- Molecular Taxonomy	24
1.Inter Simple Sequence Repeats(ISSR – PCR)	24
a) DNA Extraction and Isolation	24
b) PCR Procedures	26
c) Amplified PCR product resolving on agarose gel	27
d) Gel analysis, similarity matrix and dendrogram	28
2. Small subunit ribosomal DNA gene (18S)	29
a) DNA Extraction and Isolation	29
b) PCR Procedures	29
c) Sequencing of PCR products	30
d) Phylogenetic Analysis of 18S rDNA sequences	30
4. RESULTS	31
1. Traditional Taxonomy	31
1.1 Survey of mealybug species collected from different localities	31

in Egypt with their host plants
1.2 Synonymy lists of recorded species
1.3 Taxonomic Status of family Pseudococcidae and
Classification
Key to families
Key to subfamilies
Key to genera
Key to species
1.4. Similarity Matrix Among 14 of Mealybug species based on
Morphological Characters
1.5. Phylogenetic dendrogram based on morphological characters
analysis
2.Molecular Taxonomy
A.Using ISSRs primers to identify collected mealybugs
1.Fingerprint of thirteen pseudococcid species
a. UBC 834 Primer
b. UBC 844 primer
c. UBC 817 primer
2. Similarity analysis and dendrogram based on molecular
(ISSRs PCR)
3. Phylogenetic relationships
4. Phylogeny among host plants and geographica
populations
B. Using Small Subunit Ribosomal 18S rDNA gene to identify 13
pseudococid species
1.Comparing between Egypt species with those registered in
GenBank
2.Phylogenetic relationship based on 18S rDNA gene sequence
among 13 pseudococcid species and one eriococcid species
from Egypt

	Page
3. Phylogenetic dendrogram among 13 pseudococcid species	
and one eriococcid species based on 18S rDNA	111
Part II : Ecological Studies	115
1.INTRODUCTION	115
2. REVIEW OF LITERATURE	117
3. MATERIAL AND METHODS	121
1. Sampling and counting procedures	121
2. Seasonal fluctuations of insect population	121
3. Number and duration of annual field generations	122
4. Effects of certain weather factors on the changes in insect	
population density	122
5. Morphological and Anatomical examination	123
4. RESULTS AND DISCUSION	125
1. Seasonal fluctuations in population of different developmental	
stages of F. virgata infesting acalypha shrubs in Qalyubiya	
governorate during two successive years	125
1.1. Seasonal fluctuation in insect population	125
1.2. Seasonal fluctuations of different developmental stages	130
1.2.1. Adult stage	130
1.2.2. Total Immature stage	130
1.2.3. Nymphal instars	131
1.3. Number and duration of annual field generations of <i>F. virgata</i>	
on acalypha shrubs in Qalyubiya Governorate during two	
successive years	132
1.4. Effects of main weather factors on the changes in population	
density of F. virgata on acalypha shrubs in Qalyubiya	
Governorate during two successive years	137
1.4.1. Effect of mean maximum temperature	138
1.4.2. Effect of mean minimum temperature	139
1.4.3. Effect of average temperature	139
1.4.4. Effect of mean percentage of relative humidity	139

	Page
1.4.5. The combined effects of the four selected factors	
2. Seasonal fluctuation in population of different developmental	
stages of F. virgata infesting guava trees in Giza Governorate	
during two successive years	140
2.1. Seasonal fluctuations in insect population	140
2.2. Seasonal fluctuations of different developmental stages	146
2.2.1. Adult stage	146
2.2.2.Total immature stage	146
2.2.3. Nymphal Instars	147
2.3. Number and duration of annual field generations of <i>F. virgata</i>	
on guava trees in Giza Governorate during two successive	
years	148
2.4. Effects of main weather factors on the changes in population	
density of F. virgata on guava trees in Giza Governorate	
during two successive years	153
2.4.1. Effect of mean maximum temperature	153
2.4.2. Effect of mean minimum temperature	153
2.4.3. Effect of average temperature	153
2.4.4. Effect of mean percentage of relative humidity	153
2.4.5. The combined effects of the four selected factors	156
CONCLUSION AND DISCUSSION	155
SUMMARY	162
REFETANCES	169
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1.	List of three ISSRs primers with their names and their	
	nucleotides sequences	26
2.	Thermal cycle of PCR for amplifying ISSRs	27
3.	Thermal cycle of PCR for amplifying 18S rDNA	30
4.	List of mealybug species and their host plants collected	
	from different localities throughout three successive years	
	(2015-2017)	32
5.	Main morphological characters of 13 pseudococcid	
	species and one erococcid species collected from Egypt	
	based on adult females	51
6.	Similarity matrix percentages among 13 pseudococcid	
	species and one eriococcid species based on	
	morphological characters of adult females	55
7.	List of thirteen Pseudoccocidae and one Eriococcidae	
	species collected from different host plants and localities	
	in Egypt	58
8.	Sequences and polymorphism fragments amplified from	
	three ISSRs primers	60
9.	DNA polymorphism amplified by ISSRs – PCR (UBC	
	834) primer for the thirteen pseudococcid species and one	
	eriococcid species	62
10.	DNA polymorphism amplified by ISSRs – PCR (UBC	
	844) primer for the thirteen pseudococcid species and one	
	eriococcid species	65
11.	DNA polymorphism amplified by ISSRs – PCR (UBC	
	817) primer for thirteen pseudococcid species and one	
	eriococcid species	68
12	Similarity matrix percentages among the thirteen	00
	nseudococcid in addition to one eriococcid species based	
	on molecular analysis of ISSRs – PCR	71
		11

No.		Page
13.	Similarity matrix among six populations of Pl. citr	
	icollected from six localities on different host plants,	
	based on molecular analysis of ISSRs markers	73
14.	Similarity matrix among four populations of Ph.	
	solenopsis collected from four localities on different host	
	plants based on molecular analysis of ISSRs. markers	75
15.	Accession numbers of 23 mealybug samples and one	
	eriococcid species in GenBank and submitted accession	81
16.	Distances between <i>Ph. manihoti</i> from Egypt and related	
	10 species registered in NCBI	89
17.	Distances between <i>Pl. citri</i> from Egypt and related 10	
	species registered in NCBI	91
18.	Distances between Nepacoccus virdis from Egypt and	
	related 11 species registered in NCBI	98
19.	Distances between <i>Pl.ficus</i> from Egypt and related 7	
	species registered in NCBI	100
20.	Distances between <i>Phenacoccus madeirensis</i> from Egypt	
	and related 9 species registered in NCBI	103
21.	Distances between <i>Pseudococcus viburni</i> from Egypt and	
	related 9 species registered in NCBI	107
22.	Distances among 13 pseudococcids species and one	
	eriococcid species based on 18S rDNA	112
23.	Seasonal fluctuation of <i>Ferrisia virgata</i> different stages	
	infesting acalypha shrubs with corresponding means of	
	main weather factors in Qalyubiya Governorate 2014-	
	2015	126
24.	Seasonal fluctuation of <i>Ferrisia virgata</i> different stages	
	infesting acalypha shrubs with corresponding means of	
	main weather factors in Qalyubiya Governorate 2015-	
	2016	128
25.	Half monthly counts of F. virgataon acalypha leaf	

No.		Page
•	arranged according to formula of Audemard and Millaire (1975) at Qalyubiya Governorate 2014-2015	133
26.	Half monthly counts of <i>F. virgata</i> on acalypha leaf arranged according to formula of Audemard and Millaire (1975) at Oalyubiya Governorate 2015-2016	134
27.	Durations of <i>F. virgata</i> generations in Qalyubiya Governorate on acalypha shrubs during 2014-2015 and	134
	2015-2016	136
28.	Results of statistical analysis (simple correlation, partial regression and analysis of variance) on the relationship between the effects of four weather factors two weeks earlier on the changes in population of <i>F. virgata</i> infesting acalypha shrubs at Oalyubiya Governorate	
	during 2014-2015	138
29.	Results of statistical analysis (simple correlation, partial regression and analysis of variance) on the relationship between the effects of four weather factors two weeks earlier on the changes in population of <i>F. virgata</i> infesting acalypha shrubs at Qalyubiya Governorate	
	during 2015-2016	139
30.	Seasonal fluctuation of <i>Ferrisia virgata</i> different developmental stages infesting guava trees with corresponding means of main weather factors in Giza Governorate 2014-2015	142
31.	Seasonal fluctuation of <i>Ferrisia virgata</i> different	172
51.	developmental stages infesting guava trees with corresponding means of main weather factors in Giza Governorate 2015-2016	144
32.	Half monthly counts of F. virgata/guava leaf arranged	
	according to formula of Audemard and Millaire (1975) at	
	Giza Governorate 2014-2015	149

No.		Page
33.	Half monthly counts of F. virgata/ guava leaf arranged	
	according to formula of Audemard and Millaire (1975) at	
	Giza Governorate 2015-2016	150
34.	Durations of F. virgata generations in Giza Governorate	
	on guava trees during 2014-2015 and 2015-2016	151
35.	Results of statistical analysis (simple correlation, partial	
	regression and analysis of variance) on the relationship	
	between the effects of four weather factors two weeks	
	earlier on the changes in population of F. virgata	
	infesting guava trees at Giza Governorate during 2014-	
	2015	154
36.	Results of statistical analysis (simple correlation, partial	
	regression and analysis of variance) on the relationship	
	between the effects of four weather factors two weeks	
	earlier on the changes in population of F. virgata	
	infesting guava trees at Giza Governorate during 2015-	
	2016	154
	2010	107

LIST OF FIGURES

0.		Page
l.	Photographs of 9 recorded species	41
2.	Photographs of 4 recorded species	42
3.	Dendrogram of 13 mealybug species and one eriococcid species based on morphological characters of adult females.	57
	Agarose (1.5%) gel electrophoresis of ISSRs – PCR amplified for (UBC834) primer for the thirteen	
5.	pseudococcid species and one eriococcid species Agarose (1.5%) gel electrophoresis of ISSRs – PCR amplified for (UBC844) primer for thirteen pseudococcid	63
	species and one eriococcid species	66
.	Agarose (1.5%) gel electrophoresis of ISSRs – PCR amplified of (UBC817) primer for the thirteen	
	pseudococcid species and one eriococcid species	69
•	Dendrogram of phylogentic relationships among thirteen pseudococcid and one eriococcid species based on three	
	ISSRs primers	72
	Dendrogram of phylogenetic relationships among six populations of <i>Pl. citri</i> collected from six localities on different host plants, based on molecular analysis of ISSRs	74
).	Dendrogram of phylogenetic relationships among four populations of <i>Ph. solenopsis</i> collected from four localities on different host plants, based on molecular analysis of ISSRs	74
0.	Banding pattern of 18S rDNA of 24 samples of pseudococcid species and one eriococcid species from different host plants in some localities of Egypt	80

11.	Alignment of nucleotides sequences for 23
pseu	dococcid and one eriococcid species based on 18S
rDN	A gene
Chro	omatogram of Ferrisia gilli 18S rDNA gene sequence
The	18S rDNA gene sequence of <i>F. gilli</i>
Chro gene	omatogram of <i>Saccharicoccus sacchari</i> 18S rDNA
The sacc	18S rDNA gene sequence of <i>Saccharicoccus</i> hari
Chro	matogram of sequence <i>Maconellicoccus hirsutus</i>
The	18S rDNA gene sequence of <i>Maconallicoccus</i>
hirst	this
Chro	matogram of sequence <i>Phenacoccus manihoti</i> 18S
rDN	A gene sequence
The	18S rDNA gene sequence of <i>Phenacoccus manihoti</i>
Phyl <i>Ph</i> . reco	ogenetic tree analysis for the relationships between manihoti from Egypt and related 10 specimens rded in NCBI based on 18S rDNA gene
Chro gene	omatogram of sequence <i>Planococcus citri</i> 18S rDNA
The	18S rDNA gene sequence of <i>Planococcus citri</i>
Phyl <i>Pl. c</i> NCH	ogenetic tree analysis for the relationships between <i>citri</i> from Egypt and related 10 specimens recorder in BI based on 18S rDNA gene
Chro rDN	omatogram of sequence <i>Phenacoccus solenopsis</i> 18S A gene sequence
The	18S rDNA gene sequence of <i>Phenacoccus solenopsis</i>
Chro rDN	omatogram of sequence of <i>Trabutina serpentine</i> 18S A gene sequence
The	18S rDNA gene sequence of <i>Trabutina serpentine</i>
Chro rDN	omatogram of sequence of <i>Nepacoccus virdis</i> , 18S A gene sequence

No.		Page
29.	The 18S rDNA gene sequence of <i>Nepacoccus virdis</i>	97
30.	Phylogenetic tree analysis for the relationships between	
	Nepacoccus virdis from Egypt and related 11 specimens	
	recorder in NCBI based on 18s rDNA gene	98
31.	Chromatogram of sequence of <i>Planococcus ficus</i>	99
32.	The 18S rDNA gene sequence of <i>Planococcus ficus</i>	100
33.	Phylogenetic tree analysis for the relationships between	
	<i>Pl. ficus</i> from Egypt and related 7 species recorder in	
	NCBI based on 18S rDNA gene	101
34.	Chromatogram of sequence of <i>Phenacoccus madeirensis</i>	102
35.	The 18S rDNA gene sequence of <i>Phenacoccus</i>	
	madeirensis	102
36.	Phylogenetic tree analysis for the relationships between	
	Phenacoccus madeirensis from Egypt and related 9	
	species recorder in NCBI based on 18S rDNA gene	103
37.	Chromatogram of sequence of <i>Ferrisia malvastera</i>	104
38.	The 18S rDNA gene sequence of <i>Ferrisia malvastera</i>	105
39.	Chromatogram of sequence of <i>Pseudococcus viburni</i>	106
40	The 18S rDNA gene sequence of <i>Pseudococcus viburni</i>	106
41.	Phylogenetic tree analysis for the relationships between	100
	<i>Pseudococcus viburni</i> from Egypt and related 9 species	
	recorded in NCBI based on 18S rDNA gene	107
42.	Chromatogram of sequence of Ferrisia virgata	108
43.	The 18S rDNA gene sequence of <i>Ferrisia virgate</i>	109
44.	Chromatogram of sequence of <i>Eriococcus araucaria</i>	110
45.	The 18S rDNA gene sequence of <i>Eriococcus araucaria</i>	110
46.	The phylogenetic dendrogram among 13 Pseudococcids	
	species and one eriococcid species based on 18s rDNA	11/
47	The fluctuations in the population of <i>Earning vingsta</i> on	114
4/.	acclumba loaves at Oclumbing Covernments and the	
	acarypha leaves at Qaryubiya Governorate and the	107
	corresponding main weather factors during 2014-2015	127

No.		Page
48.	The fluctuations in the population of <i>Ferrisia virgata</i> on acalypha leaves at Qalyubiya Governorate and the corresponding main weather factors during 2015-2016	129
49	Number and duration of generations of <i>F. virgata</i> infesting acalypha shrubs at Qalyubiya Governorate 2014 -2015	136
50.	Number and duration of generations of <i>F. virgata</i> infesting acalypha shrubs at Qaluobiya Governorate 2015	100
	-2016	137
51.	The fluctuations in the population of <i>Ferrisia virgata</i> on guava leaves at Giza Governorate and the corresponding	
	main weather factors during 2014-2015	143
52.	The fluctuation in the population of <i>Ferrisia virgata</i> on guava leaves at Giza Governorate and the corresponding	
	main weather factors during 2015-2016	145
53.	Number and duration of generations of <i>F. virgata</i> infesting guava trees at Giza Governorate 2014-2015	152
54.	Number and duration of generations of <i>F</i> virgata	
	infesting guava trees at Giza Governorate 2015-2016	152
55.	Micrograph showing thickness of epidermal layer of	
	lower surfaces of acalypha and guava leaf blades	156
56.	Micrograph showing density of stomata on lower surface	
	of acalypha and guava leaf blades	157
57	Micrograph showing thickness of midrib of acalypha and	
	guava leaf blades	157

58. T.S in leaf blade of acalypha and guava plants...... **158**

ABSTRACT

Dalia Nabil: "Taxonomical and Ecological Studies on Some Mealybug species Infesting Fruit Trees and Ornamental Plants in Egypt". Unpublished Ph.D. Dissertation, Ain Shams University, Faculty of Agriculture, Department of Plant Protection, Egypt, 2020.

Survey of mealybug species was carried throughout three successive years (2014-2016) in Egypt. Identification and confirmation procedures recorded 13 pseudococcid species which belonging to 8 genera in addition to one eriococcid species. Four species were recorded for the first time during the present work.

These species with their host plants were tabulated. Synonymy list for each species was provided. Bracket and pictorial identification keys for different categories of Pseudococcidae were constructed.

Two molecular techniques were applied to confirm identification, fingerprinting the surveyed species and investigated phylogenetic relationships between these species. These techniques are:

A. Inter Simple Sequences Repeats (ISSRs):

Three specific primers were used to amplify by PCR. These primers produced polymorphic fragments. Five fragments were considered as species-specific markers for four species out of the13 recorded species. This technique could be investigated for genetic-variations among populations from different localities and hosts. Results revealed that geographical distribution has role while host plants had no effect.

B. Small Subunit Ribosomal 18S rDNA gene:

This technique was used to investigate the nucleotide sequences for 14 surveyed species. Data obtained for each species were compared with those previously registered in GenBank with percentage of identity (97-100%).

One species *Trabotina serpentina* was registered for the first time worldwide, while four species from Egyptian materials were registered with new accession numbers.

Phylogenetic relationships between the 14 species were investigated using three criteria. First one based on 48 morphological characters of adult females, while the other two based on molecular techniques (ISSRs and 18S rDNA gene). Dendrograms were calculated using special programs. Results revealed that these criteria are closely related to each other. There is a gap between Pseudococcidae and Eriococcidae. While species belonging to the same genus are situated in the same cluster.

Ecological studies in *Ferrisia virgata* on acalypha shrubs and guava trees were carried out throughout two successive years in Qalyubiya and Giza governorates. Results showed that this species had main period of seasonal activity extended from June to January of the next year. Afterwards, population of all developments stages were disappeared from leaves and overwintered under back, root and soil. The population density reached it maximum activity in mid-October on acalypha shrubs and mid-November on guava trees.

This mealybug species found to have two overlapping annual generations during active period on the two hosts during the both years.

The effects of four climatic factors on the changes in population density during activity period was investigated. Results showed that the combined effects of (means, minimum, maximum, average temperature and percentage of relative humidity, two weeks earlier, as a group were effected on the changes of population density, while each single factor had no effects.

Population density of *F. virgata* was more abundant on acalypha shrubs than guava trees, which means that mealybug species found to prefer acalypha than guava. Factors responsible for this phenomenon was also investigated.

Keywords: Pseudococcidae, *Ferrisia virgate*, Molecular genetic, Identification key, ISSRs, 18S rDNA, Polygenetic relationships, Seasonal fluctuation, Number of generations.