Tanta University Faculty of Agriculture Agronomy Department

Evaluation of some flax genotypes under water stress conditions.

BY HEBA ABD EL-HALEEM HAMED TORKY

B.Sc. Agricultural Sciences, EL-MINOFIA University 2005 M.Sc. Agricultural Sciences (Agronomy), EL-MANSOURA University2010

Thesis Submitted in partial Fulfillments of the requirements for the degree of

Doctor of Philosophy (Ph.D) in Agricultural Sciences (Agronomy)

1441 A.H 2020A.D

Contents

INTRODUCTION	1
II-REVIEWOF LITERATURE	3
III-MATERIALS AND METHODS	15
IV- RESULTS AND DISCUSSION	20
IV-1- B- Straw yield and its related characters	20
IV-1- B- 1- Analysis of variance	20
IV-1- B- 2- Mean performance	22
IV-1- B- 2- 1- Plant height	22
IV-1- B- 2- 2- Technical stem length	23
IV-1- B- 2- 3- Fruiting zone length	25
IV-1- B- 2- 4- Main stem diameter	26
IV-1- B- 2- 5- Straw yield per plant	26
IV-1- B- 2- 6- Biological yield per faddan	27
IV-1- B- 2- 7- Straw yield per faddan	28
IV-1- C- Seed yield and its related characters	35
IV-1- C- 1- Analysis of variance	35
IV-1- C- 2- Mean performance	36
IV-1- C- 2- 1- Number of apical branches per plant	36
IV-1- C- 2- 2- Number of capsules per plant	38
IV-1- C- 2- 3- Number of seeds per capsule	39
IV-1- C-2-3- Seed yield per plant	40
IV-1- C- 2- 5- Seed yield per faddan	41
IV-1- C-2-6-Oil percentage	43
IV-1- C- 2- 7- Oil yield per faddan	44
IV-1- C- 2- 8 - Seed index	45
IV-1- D- Fiber yield and its technological characters	53
IV-1- D- 1- Analysis of variance	53
IV-1- D- 2- Mean performance	54
IV-1- D- 2- 1- Fiber length	54
IV-1- D- 2- 2- Total fiber percentage	55
IV-1- D- 2- 3- Fiber yield per faddan	56
IV-1- D- 2- 4- Fiber fineness	57
V-SUMMARY	62
VI-CONCLUSION	66
VII-REFERENCES	67

List of Tables

Title of the Table	Page
Table (1): Meteorological records of the Central	
Laboratory for Agriculture Climate (Source: The	15
Agricultural Research Center, El-Giza)	
Table (2): Some physical and chemical properties of the	16
experimental soil before sowing in the two growing	10
seasons (0-30 cm) depth at El-Gemmeiza Research	
Station.	
Table (3): The flax genotypes which used in the	
experiments.	17
Table (4) Combined of variance for straw yield and its	
related characters	21
Table (5): Means of straw yield and its related characters	
as affected by irrigation treatments and flax genotypes in	30
the two seasons	
Table (6) : Effect of interaction between seasons and	
irrigation treatments on straw yield and its related	31
characters	
Table (7) : Effect of interaction between seasons and	
genotypes flax on straw yield and its related characters:	31
Table (8) : Effect of interaction between irrigation and	
genotypes flax on plant height (cm),technical length	32-33
(cm),fruiting zone length, stem diameter (mm),straw yield	
per plant (g), biological yield per faddan (t) and straw	
yield per faddan (t)	
Table (9) : Effect of interaction between seasons,	
irrigation, treatments and flax genotypes on straw yield	34
and its related characters	
Table (10) Combined analysis of variance for seed yield	
and its related characters	36

Table (11): Means of seed yield and its related characters as affected by irrigation treatments and flax genotypes in the two seasons	47
Table (12) : Effect of interaction between seasons andirrigation, treatments on seed yield and its relatedcharacters	48
Table (13) : Effect of interaction between seasons and flaxgenotypes on seed yield its related characters	49
Table (14) : Effect of interaction between irrigation, treatments and genotypes flax on seed yield and its related characters	50-51
Table (15) : Effect of interaction between seasons, irrigation treatments and flax genotypes on seed yield and its related characters	52
Table (16) Analysis of variance for fibre yield and itsrelated characters	54
Table (17): Means of fibre yield and its related characters as affected by irrigation treatments and flax genotypes in the two seasons	58
Table (18) : Effect of interaction between seasons andirrigation treatments on fibre yield and its relatedcharacters	59
Table (19): Effect of interaction between seasons andgenotypes flax on fibre yield and its related characters:	59
Table (20) : Effect of interaction between irrigationtreatments and flax genotypes on fibre yield its relatedcharacters	60
Table (21) :Effect of interaction between seasons, irrigation treatments and flax genotypes on fiber yield its related characters	61

ABSTRACT

Two-field experiments were carried out at El-Gemmeiza Agricultural Research Station, Gharbiua Governorate during the two successive seasons 2015/16 and 2016/17. The objective of this work was to evaluate the performance of some flax genotypes under different irrigation regimes. A split plot design with three replications was used. The main plots were assigned for the irrigation treatments; and ten genotypes of flax were plotted in sub-plots. The obtained results indicated that, irrigation treatments (three irrigations after life irrigation and two irrigations after life irrigation) recorded the highest straw yield per plant, biological yield per faddan, straw yield per faddan, number of capsules per plant, number of seeds per capsule, seed yield per faddan, oil yield per faddan, fiber length and total fiber percentage without significant variation between them. In addition, the highest plant height and technical stem length were scored by irrigation treatment (three irrigations after life irrigation), while the thickest stem diameter and the highest number of apical branches per plant, seed index and fiber yield per faddan were obtained from irrigation treatment (two irrigations after life irrigation). Also, one irrigation after life irrigation treatment recorded the highest oil percentage; whereas irrigate only life irrigation recorded the finest fiber.

Regarding genotypes, Sakha 3, Sakha 4 and Giza 9 genotypes scored the tallest plant height and the highest technical stem length, fiber length, total fiber percentage, fiber yield per faddan and fiber fineness with insignificant differences with Gieza11 and Geiza 12 regarding plant height and technical stem length. On the other hand, Sakha1, Sakha 2, Sakha 5, Sakha 6, Giza11 and Giza12 gave the highest number of apical branches per plant, number of capsules per plant and number of seeds per capsule. Meanwhile, Giza11 and Giza 12 recorded the highest seed yield per faddan, oil yield per faddan and seed index. Finally, Sakha 5 gave the highest oil percentage and oil yield per faddan.