STUDIES ON NUTRITIONAL COMPOSITION OF SOME CRUCIFERAE SEED SPROUTS

By

RASHA MOHSEN ABD EL WAHAB BONDOK

B.Sc. Agric. Co-Operative Sc., Higher Inst. of Agric. Cooperation, 2009 M.Sc. Agric. Sc. (Agricultural Economics), Ain Shams University, 2015

> A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agriculture Sciences (Vegetable crops)

> Department of Horticulture Faculty of Agriculture Ain Shams University

> > 2020

CONTENTS

	Pa
LIST OF TABLES	IV
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. A brief history on the use of seeds rejuvenation more than	
5,000 years ago	5
2.2. Nutritional value of some cruciferous seed sprouts	8
2.3. Effect of elicitation on contents of bioactive compounds in	
sprouts	1
2.3.1. Calcium Chloride (CaCl ₂)	1
2.3.2. Ascorbic acid (vitamin C)	1
2.3.3. Folic Acid (vitamin B)	1
2.3.4. Selenium (SE)	1
2.3.5. Chitosan (CH)	1
2.3.6. Salicylic acid (SA)	2
3. MATERIALS AND METHODS	2
4. RESULTS AND DISCUSSION	2
Part one:	2
4.1. Radish seed sprout experiments	2
4.1.1. Effect of calcium chloride application on radish sprouts	
characters at 3, 5 and 7 days old in 2016 and 2017 experiments	2
4.1.1.1. Sprout length	2
4.1.1.2. Hypocotyl length	2
4.1.1.3. Radical length	3
4.1.1.4. Fresh weight	3
4.1.1.5. Dry weight	32
4.1.2. Evaluation of spray and soaking radish seeds in calcium	
chloride on proximate composition of radish sprouts at 7 day old	

in 2016 and 2017 experiments
4.1.3. Effect of calcium chloride treatments on ascorbic acid and
sulfur content of radish sprouts at 7 day old in 2016 and 2017
experiments
4.1.4. Proximate analysis of dry seed and radish sprouts soaking in
calcium chloride
Part Two:
4.2. Rocket seed sprout experiments
4.2.1 Effect of folic acid, ascorbic acid and selenium application
on rocket sprouts characters at 3, 5 and 7 days old in 2016 and
2017 experiments
4.2.1.1. Sprout length
4.2.1.2. Hypocotyl length
4.2.1.3. Radical length
4.2.1.4. Fresh weight
4.2.1.5. Dry weight
4.2.2. Evaluation of spraying rocket seeds in folic acid, ascorbic
acid and selenium on proximate composition of rocket sprouts at 5
day old in 2016 and 2017 experiments
4.2.3. Effect of folic acid, ascorbic acid and selenium treatments
on total sugars, reducing sugars and non-reducing sugars of rocket
sprouts at 5 day in (2016 and 2017) experiments
4.2.4. Proximate analysis of dry seed and rocket sprouts spraying
in ascorbic acid
Part Three:
4.3. Broccoli seed sprout experiments
4.3.1 Effect of chitosan and salicylic acid applications on
broccoli sprouts characters at 3, 5 and 7 days old in 2016 and 2017
experiments
4.3.1.1. Sprout length
4.3.1.2. Hypocotyl length

	Page
4.3.1.3. Radical length	54
4.3.1.4. Fresh weight	55
4.3.1.5. Dry weight	56
4.3.2. Evaluation of spraying broccoli seeds in chitosan and	
salicylic acid on proximate composition of broccoli sprouts at 3	
days old in 2016 and 2017 experiments	57
4.3.3. Effect of chitosan and salicylic acid treatments on mineral	
(Ca and K) and total phenol content of broccoli sprouts at 7 day	
old in 2016 and 2017 experiments	59
4.3.4. Proximate analysis of dry seed and broccoli sprouts	
spraying in chitosan	61
5. SUMMARY AND CONCLUSION	64
6. REFERENCES	72
ARABIC SUMMARY	

LIST OF TABLES

Tables No.		Pages
1.	Effect of CaCl ₂ elicitor on sprout length (cm) at 3, 5	
	and 7 days old of radish seed sprouts in two	
	experiments (2016 and 2017)	28
2.	Effect of CaCl ₂ elicitor on sprout hypocotyl length	
	(cm) at 3, 5 and 7 days old of radish seed sprouts in	
	two experiments (2016 and 2017)	30
3.	Effect of CaCl ₂ elicitor on sprout radical length (cm)	
	at 3, 5 and 7 days old of radish seed sprouts in two	
	experiments (2016 and 2017)	31
4.	Effect of CaCl ₂ elicitor on sprouts fresh weight (g)	
	at 3, 5 and 7 days old of radish seed sprouts in two	
	experiments (2016 and 2017)	32
5.	Effect of CaCl ₂ elicitor on 10 sprouts dry weight (g)	
	at 3, 5 and 7 days old of radish seed sprouts in two	
	experiments (2016 and 2017)	33
6.	Effect of $CaCl_2$ treatment (spray or soaking) on the	
	proximate composition evaluation of radish seed	
	sprouts 7 days old in (2016 and 2017) experiments	35
7.	Effect of calcium chloride treatments on ascorbic	
	acid and sulfur content of radish sprouts at 7 day old	
	in (2016 and 2017) experiments	36
8.	Proximate analysis of dry seed and radish sprouts	
	soaking at 5 µmol/L calcium chloride	38
9.	Effect of folic acid, ascorbic acid and selenium	
	elicitors on sprout length (cm) at 3, 5 and 7 days old	
	of rocket seed sprouts in two experiments (2016 and	
	2017)	40
10.	Effect of folic acid, ascorbic acid and selenium	
	elicitors on sprout hypocotyl length (cm) at 3, 5 and	

Tables No.		Pages
	7 days old of rocket seed sprouts in two experiments	
	(2016 and 2017)	42
11.	Effect of folic acid, ascorbic acid and selenium	
	elicitors on sprout radical length (cm) at 3, 5 and 7	
	days old of rocket seed sprouts in two experiments	
	(2016 and 2017)	43
12.	Effect of folic acid, ascorbic acid and selenium	
	elicitors on sprouts fresh weight (g) at 3, 5 and 7	
	days old of rocket seed sprouts in two experiments	
	(2016 and 2017)	44
	Effect of folic acid, ascorbic acid and selenium	
13	elicitors on 10 sprouts dry weight (g) at 3, 5 and 7	
101	days old of rocket seed sprouts in two experiments	
	(2016 and 2017)	45
	Effect of folic acid, ascorbic acid and selenium	
14.	treatment spraying on the proximate composition	
	evaluation of rocket sprouts at 5 day old in 2016 and	47
	2017 experiments	47
	Effect of folic acid, ascorbic acid and selenium	
15.	treatments on total sugars, reducing sugars and non-	
	reducing sugars of rocket sprouts at 5 day in (2016	
	and 2017) experiments	48
	Proximate analysis of dry seed and rocket sprouts	
16.	spraying at 250 $\mu mol/L$ and 500 $\mu mol/L$ ascorbic	
	acid	50
	Effect of chitosan and salicylic acid elicitors on	
17.	sprout length (cm) at 3, 5 and 7 days old of broccoli	
	seed sprouts in two experiments (2016 and 2017)	53
18.	Effect of chitosan and salicylic acid elicitors on	
	sprout hypocotyl length (cm) at 3, 5 and 7 days old	
	of broccoli seed sprouts in two experiments (2016	
	and 2017)	54

V

Tables No.		Pages
19.	Effect of chitosan and salicylic acid elicitors on	
	sprout radical length (cm) at 3, 5 and 7 days old of	
	broccoli seed sprouts in two experiments (2016 and	
	2017)	55
20.	Effect of chitosan and salicylic acid elicitors on	
	sprouts fresh weight (g) at 3, 5 and 7 days old of	
	broccoli seed sprouts in two experiments (2016 and	
	2017)	56
21.	Effect of chitosan and salicylic acid elicitors on 10	
	sprouts dry weight (g) at 3, 5 and 7 days old of	
	broccoli seed sprouts in two experiments (2016 and	
	2017)	57
22.	Effect of chitosan and salicylic acid treatment	
	spraying on the proximate composition evaluation of	
	broccoli sprouts at 3 days old in 2016 and 2017	
	experiments	59
23.	Effect of chitosan and salicylic acid content on	
	evaluation of mineral and total phenols of Broccoli	
	seed sprouts (3 days old) in the two experiments	
	(2016 and 2017).	60
24.	Proximate analysis of dry seed and broccoli sprouts	
	spraying at 100 ppm chitosan	62

LIST OF FIGURES

Fig. No.		Pages
1.	Effect of CaCl ₂ elicitor on sprout characters of	
	radish seed sprouts	29
2.	Green sprouts production of radish at 7 days old.	39
3.	Effect of folic acid, ascorbic acid and selenium elicitors on sprouts characters of rocket seed sprouts	
	sproud	41
4.	Green sprouts production of rocket at 5 days old.	51
5.	Effect of chitosan and salicylic acid elicitors on	
	sprout characters of broccoli seed sprouts	53
6.	Green sprouts production of broccoli at 3 days old	63

ABSTRACT

Rasha Mohsen Abd El-Wahab Bondok: Studies on Nutritional Composition of Some Cruciferae Seed Sprouts . Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2020.

Sprouts have received increasing attention in recent years because of they are potential dietary value. Additionally, the efficient production of sprouts with high levels of phytochemicals and antioxidants is desirable. Therefore, studies were performed using some elicitation substances (biotic and abiotic) on the production and nutritional value of radish, rocket and broccoli. In order to increase the concentrations of bioactive compounds in broccoli sprouts, exogenous elicitors: calcium chloride, folic acid, ascorbic acid, selenium, chitosan and salicylic acid (SA) were sprayed at different concentrations during germination. The effects of the elicitors content on the proximate composition evaluation, on vitamin, total sugar, phenolic compounds and mineral of radish, rocket and broccoli seed sprouts (3, 5 and 7 days old) were determined in two experiments (2016 and 2017). Harvest elicitation could be done as soaking seeds in a water solution with the elicitor, applying exogenous spraying treatment over the leaves or in a hydroponic system. Elicitor nature, doses and time of treatments strongly affects the intensity of the plant response. Elicitors can stimulate different classes of secondary metabolites and affect in a different way the concentration of these compounds. A CaCl₂ elicitation, applied by soaking seeds at 5 µmol/L, resulted in a 9.48%, 26.72%, 6.55, 8.41%, 137.77 ppm and 78.53(mg/100g) increasing of moisture, protein, ash, fiber, sulfur, and vitamin C contents, respectively, in 7 day old radish sprouts as the main value of the two experiments (2016 and 2017). Treatments

with ascorbic acid at 250µmol/L increased rocket sprouts moisture, protein, ash and fiber contents by 7.28% 29.52%, 11.47% and 10.40% respectively in 5-day-old sprouts, while total sugars, reducing sugars and non-reducing sugars were increased with ascorbic acid at 500µmol/L on the in 5-day-old sprouts, 12.68%, 7.42 and 5.26%, respectively as the main value of the two experiments (2016 and 2017). Treatments of broccoli with chitosan at 100 ppm cleared that the moisture, protein, ash, fiber, calcium, potassium and total phenols of sprouts were increased by 9.40%, 33.57%, 11.64, 11.55%, 336.40 ppm, 196.27 ppm and 66.46 mg/100g, respectively as the main value of the two experiments (2016 and 2017). Therefore, treated sprouts with elicitors could be considered as useful tool for improving the growth characters and bioactive metabolites of radish, rocket and broccoli seed sprouts. Regarding their production of anti-cancer materials, as well secondary metabolic pathways respond to specific treatments with elicitors would be the basis for to enhance the production of secondary metabolites, to produce quality and healthy fresh foods.

Keywords: Elicitor, Sprout seeds, Crucifera, Phenolic compounds, Health and Chemical composition.