HYDRAULIC STUDY ON MEDIA FILTERS USING LOW-QUALITY WATER FOR COTTON IRRIGATION

BY

HEBA MOHAMED FAREED MOHAMED ELWALY

B.Sc. Agricultural Engineering, Fac. Agric., Ain Shams University, 2013

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (On Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

CONTENTS

LIST	OF TABLES
LIST	OF FIGURES
1- IN	TRODUCTION
2- RI	EVIEW OF LITERATURE
I.	Filtration and media filter in trickle irrigation
II.	Influence of wastewater on emitters performance
III.	Drip irrigation in cotton
IV.	Using wastewater in drip irrigation for cotton
V.	Effect of plant distribution in planting cotton
3- M	ATERIALS AND METHODS
3-1 The	e materials
3-1-1 E	Experimental Site
3-1-2 I	rrigation water analysis
3-1-3 S	oil analysis
3-1-4-	Irrigation network
3-1-5-	Cotton crop
3-1-6-	Irrigation water requirements
3-2 The	e methods and measurements
3-2-1 H	Hydraulic characteristics of media filter and water quality
1	measurements
3-2-2 N	Measurements for drip irrigation system
3-2-3	Crop yield and component
4- RI	ESULTS AND DISCUSSION
4-1- H	ydraulic characteristics of media filter
	afluence of wastewater on emitters performance
	etermination of irrigation water requirements
4-4- E	ffect of plants distribution and emitter types and its interaction

on growth attributes of cotton	6
4-5- Effect of plants distribution and emitter types and its interaction	
on earliness characters of cotton	6
4-6- Effect of plants distribution and emitter types and its interaction	
on yield and yield components of cotton	6
4-7- Effect of plants distribution and emitter types and its interaction	
on fiber properties of cotton	7
5- SUMMARY AND CONCLUSION	,
6- REFERENCES	8
7- ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Some Chemical analysis of treated wastewater	
	(secondary treatment)	47
2	Some organic and biological analysis of treated	
	wastewater.	48
3	Soil mechanical and chemical analyses of the	
	experimental sites in 2019 season	48
4	Specification for water pump	52
5	Specifications of filtration unit.	53
6	Characterized the Egyptian cotton variety Giza 94	53
7	The standard crop coefficient (kc) for cotton crop in	
	Mediterranean climate, at the crop growth stages	56
8	ASAE recommended classification of emitter	
	manufacture coefficient of variation "CVm"	57
9	Effect of media filtration depth and operation time on	
	filtration flowrate (m3/h)	55
10	Effect of media filtration depth and operation time on	
	pressure losses (bar)	56
11	Effect of the characteristics of wastewater used on the	
	biological oxygen demand (BOD5)	58
12	Effect of the characteristics of wastewater used on	
	total suspended solids (TSS)	59
13	Hydraulic characteristics for different dripper under	
	investigation under operating pressure (125 KPa)	61
14	Water requirements of cotton plants (ETc) for the	
	growing season	62
13	total suspended solids (TSS)	ć

Table No.		Page
15	Cotton plant height at harvest (cm) as affected by	
	plants distribution and emitter types as well as their	
	interaction during 2019 season.	64
16	Number of fruiting branches per plant of cotton as	
	affected by plants distribution and emitter types as	
	well as their interaction during 2019 season	64
17	First sympodial position of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season.	66
18	Days to the first flower appearance of cotton as	
	affected by plants distribution and emitter types as	
	well as their interaction during 2019 season	66
19	Days to the first opened boll of cotton as affected by	
	plants distribution and emitter types as well as their	
	interaction during 2019 season.	67
20	No. of opened bolls/plant for cotton as affected by	
	plants distribution and emitter types as well as their	
	interaction during 2019 season.	68
21	Boll weight (g) of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season	69
22	Seed cotton yield (Ken./fed.) of cotton as affected by	
	plants distribution and emitter types as well as their	
	interaction during 2019 season	69

Гable No.		Page
23	Lint percentage of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season.	70
24	Seed index (g) of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season.	70
25	Fiber length (Upper half mean (mm)) of cotton as	
	affected by plants distribution and Emitter types as	
	well as their interaction during 2019 season	71
26	Uniformity index (%) of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season.	72
27	Mcronaire reading of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season.	72
28	Fiber strength (g/tex) of cotton as affected by plants	
	distribution and emitter types as well as their	
	interaction during 2019 season.	73

LIST OF FIGERS

Fig. No.		Page
1	Layout of filtration unit	46
2	Filtration unit	46
3	Layout of drip irrigation design	54
4	Effect of media filtration depth and operation time on	
	filtration flowrate (m ³ /h)	56
5	Effect of media filtration depth and operation time on	
	pressure losses (bar)	57
6	Effect of the characteristics of wastewater used on the	
	biological oxygen demand (BOD ₅)	58
7	Effect of the characteristics of wastewater used on total	
	suspended solids (TSS)	59
8	Performance curves of tested dripper with flow rate (4	
	l/h)	60

ABSTRACT

Heba Mohamed Fareed Mohamed El-waly: Hydraulic Study On Media Filters Using Low-Quality Water For Cotton Irrigation. Unpublished M. Sc.Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2020.

The aim of this study is to investigate the effect of media depth on the performance of different types of emitters on pressurized irrigation system using treated wastewater. Also this study estimates the effect of using treated wastewater on the cotton (verity Giza 94) growth, quantity and quality. All field experiments were carried out at Sarapium Forest, Ministry of Agriculture and Land Reclamation in "Sarapium", Ismailia Governorate, at 30°51"43 N, 32°32" 70 E. (15 x 60) m² plot area was selected for carrying out the experiments. The first experiment for filtration performance designed as a split-plot with three replications. Two media depths (50 cm and 70 cm) were selected for the main plots while the different operation times (0, 25, 50, 75 and 100h) were selected for sub-plots with three replications. The second experiment to irrigate cotton using treated wastewater. The main plots involved two plant distributions (Mutual and Opposite) and the sub-plots involved the three types of emitters namely: online 4 l/h compensative, online 4 l/h noncompensative and built-in 4 l/h-30cm non-compensative.

Results indicated that:

Increasing media filtration depth from 50 to 70 cm has led to decrease the filtration flowrate with increasing pressure losses, biological oxygen demand (BOD₅) and total suspended solids (TSS). The filtration flowrate decreased by increasing operation time from 0 to 100 but pressure losses, BOD₅ and TSS was increased.

Emitters performance of online compensative and built-in noncompensative were generally better than the online non-compensative under using treated wastewater and emitters performance decrease by increasing operation time from zero to 100 hours.

Plants distribution significantly effect on growth and yield components of cotton. Planting cotton by mutual method gave the highest values of number of opened bolls per plant, seed cotton yield (Ken. per fed.).

Using on-line compensative emitter gave the largest values of plant height, number of opened bolls per plant, boll weight and seed cotton yield (Ken./fed.).

Mutual planting method and online compensative gave the highest values of number of fruiting branches per plant, boll weight, number of opened bolls per plant, seed index and seed cotton (yield per fed.).

Keywords: Media filter, Treated wastewater, Water quality, Drip irrigation, Emitter types, Cotton Growth and Yield.