GENETIC STABILITY ANALYSIS OF SOME NEW SNAP BEAN GENOTYPES

By

HEBA ZEINEL-ABEDIN IBRAHIM ABO ELKHEIR

B. Sc. Agric. Sc. (Soil Sci.), Fac. Agric. Cairo University, 2004 M. Sc. Agric. Sc. (Vegetable crops), Fac. Agric. Ain Shams University, 2014

> A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

2020

CONTENTS

Title	Page
LIST OF	IV
TABLES	
1. INTRODCUTION	1
2. REVIEW Of LITERATURE	4
A- Effect of sowing dates and genotypes on snap bean genotypes	4
A- Vegetative characters	4
1-Plant length	4
2-Number of branches	5
3-Number of leaves	6
4-Leaf area	6
5- Plant fresh weight	7
6- Plant dry weigh	7
B-Number of days to flowering	7
C-Pod characters	8
1-Pod weight	8
2-Pod length	8
3- Pod diameter	9
4- Pod thickness	10
D- Early and total yield	11
E-chemical composition	12
1-Fiber content	12
F-Disease severity of rust	13
B- Genotype x environment interaction of snap bean genotypes	. 13
A-Vegetative characters	13
1-Plant length	13
2-Number of branches	14
3-Number of leaves	15
4-Leaf area	15
5-plant fresh weight	16

6- plant Dry weight	16
B- Number of days to flowering	16
C-Pod characters	16
1-Pod weight	16
2-Pod length	17
3-Pod diameter	17
4- Pod thickness	17
D- Early and total yield	17
E-Chemical composition	19
1-Fiber content	19
F- Disease severity of rust	19
C- Stability of snap bean	20
a-Vegetative characters	20
1-Plant length	20
2-Number of branches	21
B- Number of days to flowering	22
C-Pod characters	23
1-Pod weight	23
2-Pod length	24
3-Pod diameter	24
4- Pod thickness	25
D- Early and total yield	25
3-MATERIALS AND METHODS	37
3-1- Factors of study	38
3-1-A-Snap bean genotypes	38
3-2-Data recoded	39
A- Vegetative characters	39
B- Number of days to flowering	40
C- Pod characteristics	40
D- Early and total yield	40
E- Chemical composition	41
F- Determination of rust severity	41

3-3- Experimental design	44
3-4 Statistical analysis	44
3-4-1: Analysis of variance of RCBD	44
3-4-2: Environment- wise analysis of variance	45
3-4-3: Pooled analysis of variance for all the environments	46
4-4-4: Stability measurements	47
3-4-4-1: Stability parameters	49
3-4-4-2: Significance of stability parameters	50
4-RESULTS AND DISCUSSION	52
4-A-Performance of genotypes under different environments	55
4-B- Phenotypic stability	95
4-C- Stability parameter	98
5-SUMMARY AND CONCLUSION	117
6-REFERENCES	127
7- ARABIC SUMMARY	

LIST OF TABLES

Table	Title	Page
No.		
1	Sources of the studied snap bean genotypes	38
2	Monthly air temperature and relative humidity in Qalubia	
	region during the period of the experiment	39
3	Disease scale used for evaluation of snap bean genotypes	42
	for rust reaction	
4	The analysis of variance (ANOVA) for individual	45
	environments	
5	Two – way table	46
6	Pooled ANOVA for environments	46
7	ANOVA for stability as per Eberhart and Russell Model	48
8	Means and stability parameters	51
9	Mean squares of combined analysis of variance for twenty	
	five snap bean genotypes (G) over four sowing dates (D)	
	and two years (Y) for the studied 20 traits in 2015/2016	
	and 2016/2017 growing seasons	54
10	Mean performance for plant length (cm) of 25 snap	
	genotypes grown under different sowing dates during the	
	seasons (2015/2016 and 2016/2017)	57
11	Mean performance for number of leaves/plant of 25 snap	
	genotypes grown under different sowing dates during the	
	seasons (2015/2016 and 2016/2017)	60
12	Mean performance for number of branches/plant of 25	
	bean genotypes grown under different sowing dates durin	
	two seasons (2015 /2016 and 2016/2017)	63
13	Mean performance for leaf area (cm ²) of 25 snap	
	genotypes grown under different sowing dates during	
	seasons(2015/2016 and 2016/2017)	65
14	Mean performance for fresh weight/plant (g) of 25 snap	
	bean genotypes grown under different sowing dates	
	during two seasons (2015/2016 and 2016/2017)	67

	Mean performance for dry weight/plant (g) of 25 snap	
	genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	69
16	Mean performance for no. days to flowering of 25 snap	
	genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	71
17	Mean performance for pod weight (g) of 25 snap	
	notypes grown under different sowing dates during two sea	
	15/2016 and 2016/2017)	73
18	Mean performance for pod length (cm) of 25 snap	
	genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	76
19	Mean performance for pod diameter (mm) of 25 snap	
	genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	78
20	Mean performance for pod thickness (mm) of 25 snap	
	genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	80
21	Mean performance for early green yield (ton/fed.) of 25	
	bean genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	83
22	Mean performance for total green yield (ton/fed.) of 25	
	bean genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	86
23	Mean performance for total chlorophyll (mg/g fresh weigl	
	25snap bean genotypes grown under different sowing	
	during two seasons (2015/2016 and 2016/2017)	88
24	Mean performance for pods fiber percentage (%) of 25	
	bean genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	91
25	Mean performance for rust disease severity (%) of 25 snap	
	genotypes grown under different sowing dates during	
	seasons (2015/2016 and 2016/2017)	94

26	Mean squares of stability analysis of variance for	
	characters studied of twenty five snap bean genotypes	97
27	Means and stability parameters for plant length (cm), No.	
	of leaves, No. of branches and leaf area (cm ²) of twenty	
	five snap bean genotypes	100
28	Means and stability parameters for pod weight, pod	
	length, pod diameter and pod thickness of twenty five	
	snap bean genotypes	106
29	Means and stability parameters for early yield, total yield,	
	fresh weight /plant and dry weight/plant of twenty five	
	snap bean genotypes	109
30	Means and stability parameters for number of days to	
	flowering, Pods fiber percent, total chlorophyll content	
	and rust disease severity of twenty five snap bean	
	genotypes	114

ABSTRACT

Heba Zeinel-Abedin Ibrahim Abo Elkeir, Genetic stability analysis of some new snap bean genotypes. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2020.

А field experiment was conducted during 2015/2016 and 2016/2017 seasons to study the genetic stability analysis of some new snap bean genotypes. Four sowing dates were conducted namely September 1st, October 1st, February 15th and March 15th. Twenty one promising snap bean genotypes and four commercial cultivars namely Bronco, Paulista, Samantha and Xera were used in the experiment. Randomized complete block design with three replications was used. Results showed that significant increase in dry weight/plant was found in first year than in second year which gave average values of 16.54gm and 16.72gm for the two years, respectively. Number of days to flowering was significantly affected by years, sowing dates, genotypes and their interaction. Genotypes G_{10} and G_6 possessed the lowest means of pods fiber content which gave mean values of 1.29 and 1.32 g/100 g fresh pod weight, respectively, with non-significant differences between them and with significant differences among G_{10} with check cultivars Bronco, Paulista, Samantha and Xera. Genotypes evaluated showed that 18 lines were absolute resistant against rust in all sowing dates. These 18 promising lines proved superiority than all evaluated commercial cultivars for this character. However, three breeding lines (G₁₀, G₁₁ and G₁₂) showed variable severity of the disease over the eight sowing dates of investigation and rated as susceptible genotypes. Besides, the check cultivars viz., Bronco, Paulista, Samantha and Xera cultivars were also rated as susceptible. Pod weight was not significantly affected by years of study but was significantly affected by sowing dates, genotypes and their interactions. The comparisons among means of different twenty five genotypes overall environments, generally, indicated that early and total green yield traits of genotype G_8 gave the highest yield followed by G_2

and G_{10} with significant difference between them, and compared with the highest check cultivars poulista and Bronco respectively. As for bi stability all parameters the majority of genotypes namely; genotypes numbers 1, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 19, 20, 21 and the check Cvs. Paulista, Samantha and Xera have significant bi values close to unity, indicating general adaptability across all environments. Genotypes numbers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13,14,17,20 and the check variety Xera exhibited specific adaptability to favourable environments, since they have bi exceeding unity for leaf area.

Key words: Snap bean, Stability, Genotype, Environment, Yield and Rust resistance.