

FACULTY OF **V**ETERINARY **M**EDICINE

Detection of Thiobencarb and penoxsulam residues in Some Fresh Water Fish

Å thesis

Presented to the Graduate School

Faculty of Veterinary Medicine, Alexandria University

In Partial Fulfillment of requirement

For the degree

0f

Master of Veterinary Medical Science

Specialization

Meat Hygiene

By

Heba Magdy Abd El –Fatah Abo Hassan

B.V.Sc. Faculty of Veterinary medicine,

Kafr-Elsheikh University, 2004

(2020)

LIST OF CONTENTS

1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
_	2.1. Sources of fish contamination	4
	2.2. Thiobencarb	9
	2.3. penoxsulam	14
	2.4. Public health hazard of thiobencarb and penoxsulam	17
	2.5. Detection of pesticide residues by HPLC	21
	2.6.Effect of heat processing on pesticide residues	21
	2.0.Effect of heat processing on pesticide residues	
3	MATERIAL AND METHODS	26
	3.1. Materials	26 26
	3.1.1. Chemicals	26 26
	3.1.1.2.1. Thiobencarb	20 26
	3.1.1.2.2. Penoxsulam	20 26
	3.1.2. Reference standards	20 27
	3.1.3. Reagents	27
	3.1.3.1. Organic solvents	27
	3.1.3.2. Equipment.	27
	<u>3.1.3.3. Apparatus</u>	27
		_,
	3.2. Methods	28
	3.2.1. Sampling	28
	3.2.1. Preparation of Sample	28
	3.2.2. Analytical method	29
	3.2.2.1. Extraction of Thiobencarb and Penoxsulam	29
	<u>3.2.2.2 Clean up</u>	30
	3.2.3. Liquid chromatography operating conditions	30
	3.2.4. Control of Thiobencarb and Penoxsulam residues	30
	using different heat treatment processes	
	3.2.4.1. Heat treatment by boiling	31
	3.2.4.2. Heat treatment by grilling	31

	3.2.5. Statistical Analysis	31
4	RESULTS	32
5	DISCUSSION	49
6	CONCLUSION AND RECOMMENDATIONS	54
7	SUMMERY	56
8	REFERANCE	58
9	ARABIC SUMMARY	

LIST OF TABLES.

	Description	Page
Table (1)	Statistical analytical results of Thiobencarb residues (μ g/kg) in examined Tilapia fish meat samples (n =50).	32
Table (2)	Table (2) Statistical analytical results of Thiobencarb residues (μ g/mg) in examined Cat fish meat samples (n =50).	33
Table (3)	Statistical analytical results of Penoxsulam residues $(\mu g/mg)$ in examined Tilapia fish meat samples (n =50).	34
Table (4)	Statistical analytical results of Penoxsulam residues (μ g/mg) in examined cat fish meat samples (n =50).	35
Table (5)	Effect of some heat treatment processes on the mean values of Thiobencarb residues (μ g/kg) in the examined muscles of Tilapia fish samples (n=9).	44
Table (6)	Effect of some heat treatment processes on the mean values of Thiobencarb residues (μ g/kg) in the examined muscles of Cat fish samples (n=9).	45
Table (7)	Effect of some heat treatment processes on the mean values of penoxsulam residues (μ g/kg) in the examined muscles of Tilapia fish samples (n=9).	46
Table (8)	Effect of some heat treatment processes on the mean values of penoxsulam residues (μ g/kg) in the examined muscles of Cat fish samples (n=9).	47

LIST OF FIGURES

r		
Figure (1)	Mean values of Thiobencarb residues in Tilapia Fish meat samples.	32
Figure (2)	Mean values of Thiobencarb residues in Cat Fish meat	33
	samples. Mean values of Penoxsulam residues in Tilapia Fish	
Figure (3)	meat samples	34
Figure (4)	Mean values of Penoxsulam residues in Cat Fish meat samples	35
Figure (5)	Calibration curve of Thiobencarb residues in Fish meat by HPLC.	36
Figure (6)	Chromatograms of Thiobencarb standards (1) 10 μ g/kg, (2) 50 μ g/kg, (3) 100 μ g/kg, (4) 500 μ g/kg, and (6) 1000 μ g/kg.	37
Figure (7)	Chromatograms of Thiobencarb spiking (1) 10 μ g/kg , (2) 50 μ g/kg , (3)100 μ g/kg , (4) 500 μ g/kg , (5) 1000 μ g/kg .	38
Figure (8)	Chromatograms of Thiobencarb S (10), S (12), Blank and Reagent blank samples.	39
Figure (9)	Calibration curves of Penoxsulam residues in examined fish meat by HPLC.	40
Figure (10)	Chromatograms of Penoxsulam standards (1) 125 μ g/kg, (2) 250 μ g/kg, (3) 500 μ g/kg, (4) 1000 μ g/kg, and (6) 5000 μ g/kg.	41
Figure (11)	Chromatograms of Penoxsulam spiking (1) 125 μ g/kg, (2) 250 μ g/kg, (3) 500 μ g/kg, (4) 1000 μ g/kg, and (6) 5000 μ g/kg.	42
Figure (12)	Chromatograms of S (11), S (13), Blank and reagent blank samples of Penoxsulam residues in examined fish meat samples.	43
Figure (13)	Effect of some heat treatment on the mean values of Thiobencarb residues (μ g/kg) in the examined Tilapia fish meat samples.	44
Figure (14)	Effect of some heat treatment on the mean values of Thiobencarb residues (μ g/kg) in the examined Cat fish meat samples.	45
Figure (15)	Effect of some heat treatment on the mean values of Penoxsulam residues (μ g/kg) in the examined Cat fish meat samples.	47
Figure (16)	Effect of some heat treatment on the mean values of Penoxsulam residues (μ g/kg) in the examined Cat fish meat samples.	48

7. SUMMERY

A total of 100 random samples of fish were collected from different locality from Kafr El-Sheikh, represented by 50 Tilapia and 50 Cat fish were subjected to determination of Thiobencarb and Penoxsulam residues in their muscle and effect of some heat treatment processes on it.

The incidence of Thiobencarb in Tilapia and C. gariepinus was 56% and 50%, respectively. The mean values of Thiobencarb residues in Tilapia were 0.298 ± 0.242 ppm as 34 (68%) was accepted and 16 (32%) was unaccepted samples.

The mean values of Thiobencarb residues in Cat fish were 0.892 ± 0.122 ppm as 36 (72%) was accepted and 14 (28%) was unaccepted.

Effect of heat treatment processes on the certain values of Thiobencarb residues in examined muscles of Tilapia (boiling and grilling) were 88.09% and 75.1% reduction% respectively.

Effect of heat treatment processes on the certain values of Thiobencarb residues in examined muscles of CAT fish (boiling and grilling) were 88.08% and 78.81% reduction % respectively.

The incidence of Penoxsulam in Tilapia and cat fish was 44% and 54%, respectively. The mean values of penoxsulam residues in Tilapia were 0.251 ± 0.279 ppm, as 39 (78%) was accepted and 11 (22%) was unaccepted samples. The mean values of penoxsulam residues in Cat fish were 0.124 ± 0.181 ppm, as 36 (72%) was accepted and 14 (28%) was unaccepted samples.

Effect of heat treatment processes on the mean values of Penoxsulam residues in examined muscles of Tilapia (boiling and grilling) were 100% and 75.487% reduction% respectively.

Effect of heat treatment processes on the mean values of Penoxsulam residues in examined muscles of Cat fish (boiling and grilling) were 100% and 75.544% reduction% respectively.