

Zagazig University Faculty of Science Botany Department

Biocontrol of two spotted spider mite, *Tetranychus urticae* Koch by bacteria isolated from Egyptian soil

Thesis Submitted for the degree of **DOCTOR OF PHILOSOPHY**

Ву

Eman Mohamed Ahmad Mahmoud Ghareeb M. Sc. In Microbiology, 2009

2019

ABSTRACT

The present work was carried out to study the acaricidal activity of bacterial and actinomycetal isolates which isolated from Egyptian soil. A total of 25 bacterial isolates and 20 actinomycetal isolates were screened for their acaricidal activity against two spotted spider mite, Tetranychus urticae Koch. Isolates A3 and B8 (91 & 96% respectively) were exhibited the highest mortality against the tested individuals. The two most potent isolates was characterized and its identification was confirmed by amplifying its 16S rRNA gene and as Streptomyces avermitillis and by API 20NE as *Pseudomonas aeruginosa*. Three techniques were applied for the two isolates, Streptomyces avermitillis and Pseudomonas aeruginosa spray technique was the most effective, LC₅₀ was 70.18 & 68.11% respectively followed by immersion and dipping technique respectively, but both of them were less toxic for predator mite (Agistemus exsertus) when treated with the previous techniques. Also, the two isolates, Streptomyces avermitillis and Pseudomonas aeruginosa have a direct contact ovicidal activity for egg of T. urticae and unhatchability 80% & 72.85% respectively influenced by egg age. Where, three days old eggs were more sensitive than one day one where LC_{50} was 53.17 & 69.28% and 60.88 & 73.27% respectively. Interestingly, the treatment with both S. avermitillis & P. aeruginosa was characterized by a significant reduction in the fecundity of adult female of T. urticae as well as shortened the longevity. Clearing zone technique was determined for production of chitinase enzyme from P. aeruginosa and it showed positive result. The maximum chitinase activity obtained at optimum incubation period 48hr.; incubation temperature 40°C; pH value 7.0 and colloidal chitin as carbon source.

Contents

Subject	Page
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
I- Identification of <i>Tetranychus urticae</i> and its economically	5
damage	
II- Actinomycetes as a group of microorganisms	7
III-Bacteria as a group of microorganisms	9
IV- Biocontrol of mites	10
V- Bioactive compounds from microorganisms	13
MATERIALS AND METHODS	18
I- Culture media	18
I-1- The media used for actinomycetes	18
I-2- The media used for bacteria	21
II- Buffer systems	22
II-1- Citrate phosphate buffer	22
II-2- Potassium phosphate buffer	22
III-Collection of soil and insect samples	24
III-a- Soil samples collection	24
III-b- Mite samples	24
IV- Isolation	24
IV-1- Isolation of actinomycetes	24
IV-2- Isolation of bacteria	25
V- Bioactivity of isolated microbes against Tetranychus	26
urticae	
VI- Identification of the most potent microbial isolate	26
VI-1- Identification of bacterial isolate	26
VI-1-a-Morphological and cultural characteristics	27
VI-1-a-1- Gram's staining	27
VI-1-a-2- Spore staining	27

VI-1-a-3- Motility test	27
VI-1-b- API 20 NE identification	27
VI-2- Identification of actinomycete isolate	30
VI-2-a-Morphological properties	30
VI-2-a-1- Spore chain morphology	30
VI-2-a-2- Electron microscopy of spore surface	30
VI-2-b- Cultural properties on different media	30
VI-2-c- Physiological properties	31
VI-2-c-i- Gelatin liquefaction	31
VI-2-c-ii- Hydrogen sulphide production	31
VI-2-c-iii- Utilization of different carbon sources	32
VI-2-c-iv- Hydrolysis of starch	32
VI-2-d- Molecular identification of the seclected actinomycetal	32
isolate	
VI-2-d-1Sequencing of 16S rRNA Amplicons	33
VII- Screening of chitinase produced by <i>Pseudomonas</i>	34
aeruginosa	
VIII- Analysis of the fermentation products	34
VIII-1- Determination of dry weight	36
VIII-2- Estimation of chitinase activity	34
VIII-3-a- Determination of the extracellular protein	36
VIII-3-b-Extracellular protein concentration	37
IX- Maintenance of the stock cultures	38
IX-1- Maintenance of the stock of actinomycete cultures	38
IX-ii- Maintenance of the stock of bacterial cultures	38

X- Preparation of iocula	39
X-1- Preparation of streptomycin inocula	39
X-2- Preparation of bacterial inocula	39
XI- Cultivation	39
XI-1- Cultivation for Streptomyces	39
XI-2- Cultivation for bacteria	39
XII- Factors affecting Chitinase activity of <i>P. aeruginosa</i>	40
XII-1-Effect of incubation period	40
XII-2-Effect of incubation temperature	40
XII-3-Effect of pH value	40
XII-4-Effect of different carbon sources	41
XIII-Mass rearing of mite, Tetranychus urticae	41
XIV- Mass rearing of predatory mite, Agistemus exsertus	41
XV- Methods of application with isolates against adult females of mite	42
XV-1- Spray method	42
XV-2- Dipping method	43
XV-3- Immersion method	43
XVI- Ovicidal action of isolates against phytophagous mite, <i>Tetranychus urticae</i>	43
XVII- Latent effect of LC ₅₀ of isolates on some biological aspects of <i>T. urticae</i>	44
XVIII- Effect of P. aeruginosa & S. avermitillis on predator	44

mite A. exsertus	
XIX- Latent effect of LC ₅₀ of isolates on some biological	
aspects of A. exsertus	45
XX- Effect of feeding predator mite, A. exsertus female on	
treated T. <i>urticae</i> nymphs with isolates LC_{50} on certain	45
biological aspects	
XXI- Statistical analysis	45
RESULTS	47
I-Isolation and screening of the actinomycetal and bacterial isolates for their toxicity against <i>Tetranychus urticae</i>	47
II- Identification of the most potent isolates	49
II-i-Identification of bacterial isolate B8	50
II-ii-Identification of actinomycetal isolate A3	52
II-ii-1-Molecular identification of isolate A3	53
II-ii-2-Morphology of spore chain and spore surface for isolate	
A3	57
III-Screening of chitinase produced from <i>Pseudomonas</i>	
aeruignosa	58
IV-Environmental Factors affecting P. aeruginosa chitinase	
production	59
IV-1-Effect of different incubation periods	59
IV-2-Effect of different incubation temperature	60
IV-3-Effect of different pH value	62
IV-4-Effect of different carbon sources	64
V-Methods of application with isolates against adult females of mite	65
V-1-Spray technique	65
V-2-dipping technique	67

V-3-immersion technique	69
VI-Comparison between three techniques of Bacterial control	70
VII-Effect of <i>P. aeruginosa</i> on <i>A. exsertus</i>	71
VIII-Effect of S. avermitillis on A. exsertus	73
IX-Latent effect of <i>P. aeruginosa</i> and <i>S. avermitillis</i> on biology of mite	74
X-Latent effect of LC ₅₀ of isolates on some biological aspects of <i>A. exsertus</i>	75
XI-Effect of feeding predator mite female on treated <i>T</i> . <i>urticae</i> nymphs with isolates LC_{50} on certain biological aspects of <i>A</i> . <i>exsertus</i>	76
XII-Ovicidal action of isolates against phytophagous mite, <i>Tetranychus urticae</i>	79
DISCUSSION	85
CONCLUSION	93
SUMMARY	94
REFERENCES	96
ARABIC SUMMARY	

List of figures

No.	Title	Page
1	Standard curve of N-acetylglucosamine	37
2	Standard curve of bovine serum albumin	37
3	Isolate A3	49
4	Isolate B8	50
5		54
6	Alignment sequence of <i>Streptomyces avermitillis</i>	55
7	Restriction profile of S. avermitillis. S, Sample. M, Marker	56
8	Phylogenetic analysis of Streptomyces avermitillis	57
9	Spore chain of isolae A3 undr light microscope	57
10	Electron micrograph of the spore surface of isolae A3	58
11	Chitin clearing zone of <i>P. aeruginosa</i>	59
12	Effect of incubation period on biomass and chitinase production by P. aeruginosa	60
13	Effect of incubation temperature on biomassand chitinase production by P. aeruginosa	62
14	Effect of different pH value on biomass and chitinase production by P. aeruginosa	63
15	Effect of different carbon sources on biomass and chitinase production by <i>P. aeruginosa</i>	65
16	Comparison between three techniques of P.aeruginosa & S. avermitillis for T. urticaecontrol	71
17	Susceptibility of A. exsertus adult female tocertain concentrations of P. aeruginosa on by	72

	spray technique	
18	Susceptibility of A. exsertus adult female to	73
	certain concentrations of S. avermitillis	
19	Latent effect of LC ₅₀ of <i>P. aeruginosa</i> and <i>S.</i>	75
	<i>avermitillis</i> on some biological aspects of <i>T</i> . <i>urticae</i>	
20	Latent effect of LC_{50} of <i>P. aeruginosa</i> and <i>S. avermitillis</i> on some biological aspects of <i>A. exsertus</i>	78
21	Effect of feeding predator mite female on	78
	treated <i>T. urticae</i> nymphs with isolates LC ₅₀ on	
	certain biological aspects of A. exsertus	
22	Toxicity of <i>P. aeruginosa</i> against one day old	79
	eggs	
22a	Toxicity of <i>P. aeruginosa</i> against three days old	80
	eggs	
23	Toxicity of S. avermitillis against one day	81
	old eggs	
23a	Toxicity of <i>S. avermitillis</i> against three days old	82
	eggs	
24	Effect of LC ₅₀ of <i>S. avermitillis</i> against life cycle	83
	of T. urticae	
25	Effect of LC ₅₀ of <i>P. aeruginosa</i> against life cycle	84
	of T. urticae	

List of tables

No.	Title	Page
1	Buffer System	23
2	Amount of acid (0.1 M glycine) and base (0.1 M NaOH) added as a buffer gives the corresponding pH value.	26
3	Identification key of API 20NE according instruction of BioMérieux Co. Marcy-l'Etoile/ France.	29
4	Screening of acaricidal effect of filterate and pellets of bacterial isolates on <i>T. urticae</i> .	48
5	Screening of acaricidal effect of filterate and pellets of actinomycetal isolates on <i>T. urticae</i> .	49
6	Morphological characteristics for Isolate B8	51
7	Identification of tested bacterial isolate B8 using API 20 NE Kit	51
8	Culture characterization of actinomycetal isolte A3	53
9	Morphological and biochemical characteristic of isolate A3	54
10	Effect of incubation period on biomass and chitinase production by <i>P. aeruginosa</i>	60
11	Effect of incubation temperature on biomass and chitinase production by <i>P. aeruginosa</i>	61
12	Effect of different pH value on biomass and chitinase production by <i>P. aeruginosa</i>	63
13	Effect of different carbon sources on biomass and chitinase production by <i>P. aeruginosa</i>	64
14	Toxicity response of <i>T. urticae</i> treated with <i>P. aeruginosa</i> culture	66
15	Toxicity response of <i>T. urticae</i> treated with <i>S.</i>	67

	avermitillis culture by spray technique	
16	Toxicity response of T. urticae treated with P. aeruginosa culture by dipping technique	68
17	Toxicity response of T. urticae treated with of S.avermitillis culture by dipping technique	68
18	Toxicity response of T. urticae treated with P.aeruginosa culture by immersion technique	69
19	Toxicity response of T. urticae treated with of S.avermitillis culture by immersion technique	70
20	Comparison between three techniques of P.auerginosa & S. avermitillis for T. urticae control	70
21	Susceptibility of A. exsertus adult female to certainconcentrations of P. aeruginosa on by spraytechnique	72
22	Susceptibility of A. exsertus adult female to certain concentrations of S. avermitillis on by spray technique	73
23	Latent effect of LC_{50} of <i>P. aeruginosa</i> and <i>S. avermitillis</i> on some biological aspects of <i>T. urticae</i>	74
24	Latent effect of LC50 of P. aeruginosa and S.avermitillis on some biological aspects of A. exsertus	77
25	Effect of feeding predator mite female on treated T.urticaenymphswithisolatesLC50oncertainbiological aspects of A. exsertus	77
26	Toxicity of <i>P. aeruginosa</i> against one and three	79

	days old eggs	
27	Toxicity of <i>S. avermitillis</i> against one and three days old eggs	81
28	Effect of LC ₅₀ of S. avermitillis against life cycle of T. urticae	82
29	Effect of LC ₅₀ of <i>P. aeruginosa</i> against life cycle of <i>T. urticae</i>	83