GENETIC IMPROVEMENT OF SOME PRODUCTIVE TRAITS OF LOCAL CHICKEN STRAIN BY TRANSFERRING GROWTH HORMONE GENE FROM BROILER

A THESIS

PRESENTED TO THE GRADUATE SCHOOL, FACULTY OF AGRICULTURE, DAMANHOUR UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

POULTRY PRODUCTION

BY

AHMED NABIL ABD EL-HAMID NAWAR

2020

CONTENTS

<u>No</u> .		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1	Growth hormone (GH)	3
2.2	Chicken Growth Hormone (cGH) gene	4
2.3	Molecular genetics and analysis techniques	4
2.4	DNA transformation technique	6
2.4.1	Sperm-mediated gene transfer (SMGT)	7
2.4.2	Bioresonance	7
2.5	Cobb 500 broiler chickens traits	8
2.6	Bandarah chicken strain	9
2.7	Effect of transgenic techniques on hatchability trait	10
2.7.1	Fertility rate%	10
2.7.2	2.7.2. Hatchability %	11
2.7.3	Effect of transgenic techniques on growth traits	12
2.7.4	Effect of transgenic techniques on Feed intake and Feed conversion	12
2.7.5	Effect of transgenic techniques on Carcass trait	13
2.7.6	Effect of transgenic techniques and GH gene on egg production traits	13
3	MATERIALS AND METHODS	15
3.1	Experimental birds and treatments	15
3.2	Molecular isolation and cloning Growth hormone gene	15
3.2.1	Chicken liver samples	15
3.2.2	Total RNA extraction and cDNA synthesis	15

3.2.3	Amplification of chicken growth hormone (cGH) cDNA by reverse transcriptase polymerase chain reaction (RT-PCR)	15
3.2.4	cGH gene transfer methods	17
3.2.4.1	the first method was using sperm-mediated gene transfer	17
3.2.4.2	The second method was using Bioresonance	17
3.2.5	Semen collection	20
3.2.6	Semen mixed with cGH gene, lipofictin reagent and media dilution	20
3.2.7	Lipofectin reagent	20
3.2.8	Skim milk media dilution component	20
3.3	Artificial insemination to produce generation one	20
3.4	Artificial insemination to produce generation two	20
3.5	Incubation technique	20
3.6	First and second generation	21
3.6.1	Birds and their management	21
3.7	Studied traits in each generation	23
3.7.1	Fertility	23
3.7.2	Hatchability for fertile eggs (%)	23
3.7.3	Hatchability for total eggs	23
3.7.4	Body weight traits	23
3.7.4.1	Average live body weight	23
3.7.4.2	Growth rate	24
3.7.5	Feed consumption	24
3.7.6	Feed conversion ratio:	24
3.7.7	Slaughtering parameters	24
3.7.8	Methods for evaluating chicken meat quality	24
3.7.8.1	pH value	24

3.7.8.2	Water holding capacity (W.H.C) determination	24
3.7.8.3	Shearing force	25
3.7.8.4	Color intensity	25
3.7.9	Indicators of antioxidative status	25
3.7.10	Microbiological Study	25
3.7.11	Egg production traits	26
3.7.11.1	Body weight at sexual maturity	26
3.7.11.2	Age at sexual maturity	26
3.7.11.3	Egg number during the first 90 days of production	26
3.7.11.4	Egg weight during the first 90 days of production	26
3.7.11.5	Egg mass during the first 90 days of production	26
3.7.12	genetic analyses	26
3.8	Gene Transferring response (R)	26
3.9	Statistical analysis	27
4	Results and discussions	28
4.1	Isolation, cloning and sequencing of (cGH) gene	28
4.1.1	Genetic analyses of GH mRNA	30
4.2	Percentage of fertility and hatchability for different experimental groups	35
4.2.1	Fertility percentage	35
4.2.2	Hatchability for fertile and total eggs percentage	35
4.3	Body weight (Bw) traits	38
4.3.1	Body weight at hatch (Bw 0)and four weeks (Bw 4) of age	38
4.3.2	Body weight at 8 (Bw 8) weeks of age	40
4.3.3	Body weight at 12 wks of age	42
4.3.4	Body weight at 16 wk of age	44

4.4	Growth rate	46
4.4.1	Growth rate from day at hatch to four weeks of age	46
4.4.2	Growth rate during (4-8) weeks of age	46
4.4.3	Growth rate during (8-12) weeks of age	48
4.4.4	Growth rate during (12-16) weeks of age	48
4.5	Feed consumption during different periods of growth	51
4.6	Feed conversion during different periods of growth	51
4.7	Carcass traits	56
4.8	Methods for evaluating chicken meat quality	58
3.8.1	pH value, Optical density (OD), water holding capacity (W.H.C) determination, and Shearing force (SF)	58
3.8.2	Antioxidative status: tissue Malondialdehyde (MDA), Glutathione peroxidase (GSH-Px) and super oxide dismutase (SOD)	60
3.8.3	Microbiological traits in intestine	60
3.8.4	Different phytochemicals supplementation on Coliform bacteria, Psychrophilic bacteria and E.coli (log CFU/g) in breast and thigh meat	62
4.9	Egg production traits	64
4.9.1	Age at sexual maturity	64
4.9.2	Body weight at sexual maturity	64
4.9.3	Egg number during the first 90 days of laying	64
4.9.4	Average egg weight of the first 90 days of laying	64
4.9.5	Egg mass during the first 90 days of laying	64
5.	SUMMARY AND CONCLUSION	68
6.	REFERENCES	72
7.	ARABIC SUMMARY	

LIST OF TABLES

<u>No</u> .		Page
1	List of the abbreviation of strains used in all tables as cited in the literature	
2	offspring number at hatch, 4, 8, 12 and 16 weeks of age for methods and generations	21
3	The ingredients (per ton) and the calculated analysis of rations used throughout the experiment	22
4	Means \pm stander errors (SE) of Fertility and hatchability percentage by two methods of transferring techniques and generations for Bandarah strain	37
5	Response of two methods of gene transferring for fertility and hatchability percentage traits.	37
6	Means \pm stander errors (SE) of body weight at hatch and four weeks of age by two methods of transferring techniques and generations for Bandarah strain	39
7	Response of two methods of gene transferring for body weight at hatch and four week of age	39
8	Means \pm stander errors (SE) of body weight at eight weeks of age for male, female and combined sex by two methods of transferring techniques and generations for Bandarah strain	41
9	Response of two methods of gene transferring for body weight at eight weeks of age	41
10	Means \pm stander errors (SE) of body weight at 12 weeks of age for male, female and combined sex by two methods of transferring techniques and generations for Bandarah strain	43
11	Response of two methods of gene transferring for body weight at 12 wk of age	43
12	Means \pm stander errors (SE) of body weight at 16 weeks of age for male, female and combined sex by two methods of transferring techniques and generations for Bandarah strain	45
13	Response of two methods of gene transferring for body weight at 16wk of age	45
14	Means \pm stander errors (SE) of growth rate from day of hatch to four weeks of age and from four to eight weeks of age by two methods of transferring techniques and generations for Bandarah strain	47

- 15 Response of gene transferring two methods for growth rate from 47 day of hatch to four weeks of age and from four to eight weeks of age traits.
- Means ± stander errors (SE) of growth rate during 8:12 weeks of
 49 age for male, female and combined sex by two methods of
 transferring techniques and generations for Bandarah strain
- 17 Response of two methods of gene transferring for growth rate 49 during 8:12 weeks of age
- 18 Means ± stander errors (SE) of growth rate during 12:16 weeks of age for male, female and combined sex by two methods of transferring techniques and generations for Bandarah strain
- 19 Response of two methods of gene transferring for growth rate 50 during 12:16 weeks of age
- 20 Means ± stander errors (SE) of Feed consumption during different periods of growth by two methods of transferring techniques and generations for Bandarah strain 53
- 21 Means \pm stander errors (SE) of feed conversion during different 54 periods of growth by two methods of transferring techniques and generations for Bandarah strain
- 22 Response of two methods of gene transferring for feed consumption 55 during different periods of growth
- 23 Response of two methods of gene transferring for feed conversion 55 during different periods of growth
- 24 Means ± stander errors (SE) of carcass weight and the relative percentages of some carcass traits by two methods of transferring techniques and generations for Bandarah strain 57
- 25 Response of gene transferring two methods for carcass weight and 58 the relative percentages of some carcass traits
- 26 Means ± stander errors (SE) of pH, optical density, WHC and 59 shearing force in breast and thigh meat by two methods of transferring techniques and generations for Bandarah strain
- Means ± stander errors (SE) of on tissue Malondialdehyde (MDA), Glutathione peroxidase (GSH-Px) and super oxide dismutase (SOD) in breast and thigh Bandarah meat by two methods of transferring techniques and generations for Bandarah strain
- 28 Count of aerobic, anaerobic and total coliform bacteria in intestine
 62 by two methods of transferring techniques and generations for
 Bandarah strain.

- Means ± stander errors (SE) of different phytochemicals supplementation on Coliform bacteria, Psychrophilic bacteria and E.coli (log CFU/g) in breast and thigh meat by two methods of transferring techniques and generations for Bandarah strain
- Means ± stander errors (SE) of egg production traits during the first
 90 days by two methods of transferring techniques and generations
 for Bandarah strain
- Response of two methods of gene transferring for age and body weight at sexual maturity and egg production traits during the first 90 days

LIST OF FIGURES

<u>No</u> .		Page
1	Diagrammatic representation of the biolistic transformation vector pLUS using to clone the cGH	16
2	Diagram to apparatus transferring gene by Bioresonance	17
3	Agarose gel electrophoresis (1.5%) of PCR products using GH forward (F) and GH reverse (R) primers using cDNA as a template. M: 100 bp DNA Ladder	29
4	Sequencing alignment result of cGH recombinant gene by standard Sanger sequencing method using T7 forward primer.	29
5	PCR Products Bandarah chicken Growth Hormone cGH, mRNA normal Length 798bp for Bandarah chicken control without any gene treatment first generation.	30
6	PCR Products Bandarah Growth Hormone GH, mRNA Length 798bp, for Bandarah chicken control without any gene treatment second generation	31
7	PCR Products Bandarah Growth Hormone GH, mRNA normal Length 800bp for Bandarah chicken by Bio method, first generation	32
8	PCR Products Gallus Gallus Growth Hormone GH, mRNA normal Length 800bp, from Bandarah chicken by Bio method second generation	32
9	PCR Products Bandarah Growth Hormone GH, mRNA normal length 810 bp Bandarah chicken by SMGT method.first generation	33
10	PCR Products Bandarah Growth Hormone GH, mRNA Bandarah	34

10 PCR Products Bandarah Growth Hormone GH, mRNA Bandarah chicken by SMGT method. Second generation

5. SUMMARY AND CONCLUSION

The present study was carried out at Faculty of Agriculture Damanhour University Animal and Poultry Production Department, El-Sabahia Poultry Research Station in Alexandria, Animal Production Research Institute, Agricultural Research Center, Ministry of Agriculture. with the cooperation of Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt and BioMedTec, University of Lübeck, Germany from 2017 to 2019. The experimental was aimed to investigate isolation, cloning and sequencing of chicken Growth hormone gene (cGH) as an important gene from chicken fast growing (cobb 500 broilers) as a high producing exotic broiler strain, then transfer chicken Growth hormone gene by two methods the first one gene transfer using sperm-mediated gene transfer (SMGT) technique and the second method gene transfer using bioresonance.to Bandarah develop chicken strains.

A total 125 hens and 25 cocks at 8 month of age from Bandrah a local chicken strain were used to start this study to produce generation one. The birds were assigned in individual cages; and divided randomly into 3 groups. The first (SMGT) used method cGH gene transfer using sperm-mediated gene transfer technique contain 50 hens and 10 cocks, second group (Bio) used method cGH gene transfer using Bioresonance contain 50 hens and 10 cocks, third group without any gene treatment (control) used classic artificial insemination contain 25 hens and 5 cocks. Second generation done by classic artificial insemination between cocks and chicken from each group.

The present work was carried out to study:

- Applicability of the modern biological technology for molecular genetics and genetic engineering to isolation, cloning and sequencing of chicken chicken growth hormone gene. c(GH) gene isolation and cloning from chicken (cobb 500 broilers) as a high producing exotic strain in growth traits and sequencing analysis compared to sequence reference which published in NCBI to transfer it to Bandrah a local chicken strain.
- The effect of methods using Sperm Mediated Gene Transfer and Bioresonance in gene transfer to Bandarah developed chicken strains to produce transgenic chickens of native Egypt breed.
- Produced second generation by classic artificial insemination between cocks and chicken from each group first generation.

Studied traits in each generation:

- 1- Fertility and hatchability of fertile and total eggs percentage.
- 2- Chicks were individually weighed Body weight was recorded at hatch to the nearest 0.1 g, and at 4, 8, 12 and 16 weeks of age to the nearest g.
- 3- Growth rate was estimated biweekly during periods 0:4, 4:8, 8:12, and 12:16 weeks.
- 4- The average feed consumption and Feed conversion ratio of each bird was calculated in each group during this period 8:10, 10:12, 12:14, 14:16 and 8:16 weeks.
- 5- Slaughtering parameters and Shin bone length and Sternum length cm were measured

- 6- Chicken meat quality was measured (pH value, Water holding capacity, Bound water % of moisture content, Shearing force, Colour intensity), antioxidative status (Determination of Malondialdehyde (MDA) in tissue, Glutathione peroxidase and Superoxide dismutase activity) and Microbiological Study
- 7- Age and body weight at sexual maturity was record for each hen.
- 8- Egg number during up to 90 days of the first egg lay.
- 9- Average egg weight up to 90 days of the first egg lay.
- 10-Egg mass during the first 90 days of laying were estimated.
- 11-Genetic analyses to test cGH mRNA gene in chicken groups for first and second generation.

Results obtained could be summarized as follows:

- Total RNA was extracted from chicken liver tissue and the cDNA was successfully prepared.
- PCR amplification with cGH specific primers generated 429bp fragment
- The amplified cDNA fragments were then sub cloned into pGEM3Zf+ plasmid.
- Plasmid purification and perform standard PCR shows a fragment of about 429bp when using specific cGH primers and the same fragment size was generated by double digestion of recombinant plasmid.
- The recombinant cDNA with the Gen Bank reference sequence accession number: LC441152.1.
- The nucleotide and deduced amino acids were aligned and compared with reference sequence which showed about 99% matching due to heterozygous of the extracted cDNA.
- There were no significant difference between methods or generations, the averages of fertility percentage were 89.84%, 88.84% and 91.27 % for SMGT, Bio and control, respectively.
- The highest insignificant values were found for hatchability of fertile and total eggs percentage in the control line at the first generation 95.64% and 88.49%, respectively.
- The body weight at hatch and at 4 weeks of age increased by 3.32 g and 8.09 for SMGT method and by 1.27 and 5.22 for Bio method, respectively.
- The highest insignificant body weight was found in SMGT method 372.05 g and the lowest weight was found in Bio method 365.76 g for the combined sexes of the body weight at 8 weeks of age.
- The differences between the overall mean of SMGT method and the control line were 56.72 g for males and 12.94 g for females and 43.63 g for combined sex, while, the responses of Bio method were -29.03 g, -101.13 g and 11.78 g for male, female and combined sex, respectively.
- There were highly significant differences (P<0.01) between methods and generations for body weight at 12 wks of age.
- The SMGT method was increased the body weight at 12 wk of age by 60.17 g, 7.96 g and 20.02 g for males, females and combined sex respectively.
- The BW at 16 weeks of combined sex was increased by 69.31g for SMGT methods while, decreased by 27.61g for Bio methods.

- Effect of SMGT and Bio methods for body weight at different age observed that the SMGT method increased body weight more than Bio method, but this increase was not significant.
- The growth rate of SMGT, Bio and control has 131.64%, 130.68 and 132.35%, respectively, during (0-4) weeks of age.
- The growth rate during (4-8) week of age increased by 5.85% and 0.86 % for SMGT and bio methods.
- The SMGT and Bio methods increased growth rate during (8-12) weeks of age by 5.03% and 10.72% for combined sex, respectively.
- Using the SMGT method, the response of growth rate during (12-16) week of age was positive, since the estimates were (8.99, 2.33 and 4.72%) for males, females and combined sex, respectively, for Bio method, the growth rate during the same periods increased by (1.91, 2.33 and 0.03) for males and combined sex, respectively.
- The feed consumption increased at different periods of growth for SMGT and Bio methods except at 8-10 and 14-16 wk. of age decreased by 2.05 and 0.04g for SMGT method, respectively.
- For SMGT method the feed conversion increased at different periods of growth except at 14-16 wk. of age it was decreased by 1.58. While, for Bio method, the feed conversion decreased by 1.69 and 0.57 at (8-10 and 14-16 wk. of age).
- The heaviest carcass weight was found in SMGT method 1016.0g, while, the lightest weight was found in control line (841.22). For carcass percentage, Bio method had the heaviest percentage 67.03% when compared with the other methods.
- The shin bone and Sternum bone length were shortened significantly (≤ 0.01) in the second generation compared with the first one (10.5 vs 13.50) and (12.31 vs 17.22), respectively.
- The same trend (low pH in SMGT and Bio methods and high pH in control were observed in first and second generation.
- SMGT and Bio methods reduced WHC and shearing force compared with control, and the opposite trend was observed in the meat optical density.
- The methods SMGT and Bio showed property of good values of pH, optical density, water holding capacity and shearing force than control.
- The methods SMGT and Bio significantly decreased lipid peroxidation as indicated by the levels of MDA and significantly enhanced the tissue antioxidative status as indicated with the levels of GSH-Px and SOD.
- The two method of transferring were decreased the ASM at the second generation by 35.01 d and 21.65 d on SMGT method and Bio method, respectively.
- The responses of BWSM were negative (-81.47) and (-124.42) as a result of SMGT method and Bio method, respectively.
- Egg number which produced during the first 90 days from SMGT method and Bio methods pullets significantly increased compared with the control.
- There were highly significant difference between methods found, the SMGT method had the heaviest egg weight 49.20 g followed by control one 48.22g and the lightest egg weight was found in the Bio method 47.44g.
- The SMGT and Bio method improved egg mass during the first 90 days of laying by 512.62 g and 272.15g, respectively.

- The amplified cDNA fragments from blood sample of first and second generation were sub cloned into a pGEM3Zf⁺ plasmid and subjected to sequencing.
- Sequence analysis was carried out using GENETYX software.
- PCR Products cGH, mRNA normal Length 798bp for Bandarah chicken control without any gene treatment, the same result in first and second generation.
- PCR Products GH, mRNA normal Length 800bp for transgenic chicken Bandarah chicken which treat by Bio method, the same result in first and second generation.
- PCR Products GH, mRNA normal Length 810bp for transgenic chicken Bandarah chicken which treat by SMGT method, the same result in first and second generation.

In conclusion:

cGH Gene successfully isolate, molecular cloning of from Cobb 500, as an important gene from high producing chicken breed and transferring by two methods SMGT and Bio to production transgenic chickens of a local strain in Egypt Bandarah.

SMGT is an efficient method that will hopefully facilitate the implementation of strategies for securing the benefits that can be expected to arise from the introduction of transgenic chicken, Bio open important new perspectives in the field of animal transgenesis would be more rapid, with quick and effective delivery of genes to target tissues.

Chicken cGH gene was effect in all productive performance and moved from the first generation to the second with the same shape and increased the effect.