SIMULATION MODEL TO IMPROVE FARM ECONOMICS UNDER MIXED FARMING SYSTEM (CROP-LIVESTOCK)

By

HATEM MOHAMED ISMAIL

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Ain Shams University, 2000M.Sc. Agric. Sci. (Animal Breeding), Fac. Agric., Cairo University, 2006

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Animal Breeding)

Department of Animal Production Faculty of Agriculture Ain Shams University

ABSTRACT

Hatem Mohamed Ismail. Simulation Model to Improve Farm Economics under Mixed Farming System (Crop-Livestock). Unpublished Ph.D. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2020.

In Egypt, mixed (crop-livestock) farming system is considered as the dominant livestock system. In order to increase productivity there is a crucial need to meet the animal daily requirements. However, there is a great challenge with the current situation of inadequate cultivated area, limited availability and quality of feed, especially during the summer season.

The aim of the current study was to characterize existing mixed farming system and find out the optimum combination of inputs from farm forage and cash crops to minimize animal feeding costs and consequently increase farm profitability. The data were collected through interviews with semi-structured questionnaire. A cross sectional survey covered a total of 100 householders located in two governorates was done. According to cluster analysis the data were divided into 3 clusters ("El-Beheira", "Qena", and "Mix") according to 14 input variables. Four scenarios were proposed by the model for each cluster (El-Beheira and Qena): first scenario (SI) calculated the current feeding situation without any intervention as base run, second scenario (SII) covered animal feeding requirements according to NRC (2001), third scenario (SIII) covered the animal feeding requirements by reallocating some green forages in summer with other green forage that were higher in protein and energy, and fourth scenario (SIV) used the available and easy feeding package or reallocated farm feed resources. All four proposed scenarios were tested on the same herd. The results indicated that lactation period, the total milk yield and the number of milking heads were significantly (P<0.05) higher in El-Beheira cluster as compared to those in Qena cluster. Berseem area was significantly (P<0.05) higher in El-Beheira cluster (48 kirats) than Qena cluster (23 kirats). Darawa percentage was significantly (P<0.05) higher in Qena (8%) than El-Beheira (2%). Annual crops (sugarcane and alfalfa) was cultivated only in Qena cluster. Using appropriate nutritional packages such as corn silage and Berseem hay reduced the shortage of feed leading to a sustainable animal production. Using available feeding packages and reallocated farm resources in scenario IV reduced feeding costs in winter and summer seasons in El-Beheira by 52.7% and 4.2% and in Qena the reductions were by 52.3% and 20.9%, respectively. Scenario IV increased farm profitability followed by scenario III and scenario II. From the present results, it could be concluded that a great attention should be given to increase the farmers' awareness about the optimum balanced animal feed. Likewise appropriate use of the available feed resources that will lead to reduce animal production costs. With limitation of cultivated land, farmers have no or limited choice so, it need help to take decision. Computational models is time, effort and money saving and more efficient method to help farms to test proposed options.

Ensuring a relation between farmers and researchers through extension agents and systems study is highly recommended.

Keyword: Mixed farming system, Cluster analysis, Dairy animal feeding and Computation model.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	VIII
INTRODUCTION	1
REVIEW OF LITERATTURE	3
2.1 System approach and thinking	3
2.1.1 System definition	3
2.1.2 Properties of a system	4
2.1.3 The benefits of systems thinking	5
2.1.4 The importance of systems approach	6
2.1.4.1 Systems Analysis for scientists & policy makers and	8
what it achieves	
2.1.5 System boundary	10
2.1.6 Open and closed systems	11
2.1.7 Environment	11
2.2 Mixed (crop-livestock) farming system	12
2.2.1 Definition of mixed (crop-livestock) farming system	12
2.2.2 Characteristics of mixed (crop-livestock) farming	13
system	
2.2.2.1 Cropping system.	19
2.2.2.2 Farm size, herd size, herd structure and herd	
composition	22
2.2.2.1 Farm size and herd size	22
2.2.2.2 Herd composition and herd structure	23
2.2.2.3 Milk production and reproductive performance	25
2.2.2.3.1 Daily milk yield (DMY)	25
2.2.2.3.2 Total milk yield (TMY) per lactation	26
2.2.2.3.3 Lactation length (LL)	27
2.2.2.3.4 Calving Interval (CI)	27

		Page
2.2.2.4	4 Feeding strategies	28
2.2.2.	5 Economics of smallholder dairy production enterprises	33
2.3	Models	34
2.3.1	Model definition	34
2.3.2	Types of models	36
2.3.3	Modeling and simulation	36
2.3.3.	1 Modeling examples	39
2.3.3.2	2 Model evaluation	42
MAT	ERIALS AND METHODS	44
3.1 Ba	ackground of the study area	44
3.2 St	rvey preparation and technique	44
3.3 Sa	impling techniques	46
3.4 Da	ata collection	47
3.4.1	Basic Information	47
3.4.2	Cropping pattern	47
3.4.3	Herd size and herd composition	47
3.4.4	Productive and reproductive performance	48
3.4.5	Animal Feeding system	48
3.5 Cl	uster analysis	48
3.5.1	Clusters statistical analysis	49
3.6 Co	omputer model	49
3.6.1	Developing computer model	49
3.6.2	Computer model validation	52
3.6.3	Computer model operation	52
3.6.4	Scenarios	53
RESU	JLTS AND DISCUSSION	55
4.1 C	haracteristics of mixed (crop-livestock) farming system	55
4.1.1	Number of clusters	55
4.1.2	Cluster model summary	55
4.1.3	Herd size, herd composition and productive and	
	reproductive performance	59

	Page
4.1.3.1 Herd size and herd composition	60
4.1.3.2 Productive and reproductive performance	61
4.1.3.2.1 Daily milk yield (DMY)	61
4.1.3.2.2 Milk yield in 150 days (M150)	62
4.1.3.2.3 Total milk yield (TMY)	62
4.1.3.2.4 Lactation length (LL)	62
4.1.3.2.5 Calving interval (CI)	63
4.1.4 Cropping pattern	64
4.1.5 Animal feeding	70
4.2 Scenarios	75
4.2.1 Proposed scenarios for El-Beheira dairy farm as case	
study	75
4.2.1.1 Animal feeding system of El-Beheira dairy farm case	
study	78
4.2.1.2 Proposed cropping pattern of El-Beheira dairy farm case	
study	82
4.2.1.3 Economic efficiency of El-Beheira dairy farm case	
study	84
4.2.1.3.1 Animal production economic efficiency of El-	
Beheira dairy farm case study	84
4.2.1.3.2 Crop production economic efficiency of El-Beheira	
dairy farm case study	87
4.2.1.3.3 Farm production economic efficiency of El-Beheira	
dairy farm case study	88
4.2.2 Proposed scenarios of Qena dairy farm as case study	89
4.2.2.1 Animal feeding system of Qena dairy farm case study	92
4.2.2.2 Proposed cropping pattern of Qena dairy farm case	
study	95
4.2.2.3 Economic efficiency of Qena dairy farm case study.	97
4.2.2.3.1 Economic efficiency of animal production of Qena	
dairy farm case study	97

		Page
4.2.2.3.2	Crop production economic efficiency of Qena dairy	
	farm case study	100
4.2.2.3.3	Farm production economic efficiency of Qena dairy	
	farm case study	101
SUMMAI	RY AND CONCLUSION	102
REFERENCES		110
APPEND	IX	123
ARABIC	SUMMARY	

LIST OF TABLES

Table		
No.		Page
1	Cluster inputs importance and its overall means.	58
2	Average herd size, productive and reproductive traits	
	(LSM±SE) of dairy animals of El-Beheira and Qena	
	clusters.	59
3	Average herd size, productive and reproductive traits	
	(LSM±SE) of dairy animals of Mix cluster.	64
4	The average of the cultivated area of winter and	
	summer crops and its percentage (LSM ±SE) in El-	
	Beheira and Qena clusters.	65
5	The average of the cultivated area of winter and	
	summer crops and its percentage (LSM \pm SE) in Mix	
	clusters.	69
6	Animal feeding system in winter and summer of El-	
	Beheira and Qena clusters.	71
7	Concentrate ration components for El-Beheira and	
	Qena clusters.	73
8	Animal feeding system in winter and summer of Mix	
	cluster.	74
9	Concentrate ration components for Mix cluster.	74
10	Animal nutrient requirements of El-Beheira dairy	
	farm as case study according to NRC (2001)	76
11	Animal feeding requirements compared with existing	
	system in winter and summer of El-Beheira dairy	
	farm case study.	78
12	Characteristics of the proposed scenarios (B SII, B	
	SIII and B SIV) of animal feeding system compared	
	with B SI as base run scenario in winter and summer	
	of El-Beheira dairy farm case study.	80

No.		Page
13	Proposed scenarios (B SII, B SIII and B SIV) for	
	cropping pattern compared with B SI as base run	
	scenario in winter and summer seasons of El-Beheira	
	dairy farm case study.	83
14	Economic efficiency all over the year of El-Beheira	
	dairy farm case study.	86
15	Animal nutrient requirements of Qena dairy farm as	
	case study according to NRC (2001)	90
16	Animal feeding requirements compared with current	
	animal feeding system in winter and summer of Qena	
	dairy farm case study.	91
17	Characteristics of the proposed scenarios (Q SII, Q	
	SIII and Q SIV) for animal feeding system compared	
	with Q SI as base run scenario in winter and summer	
	of Qena dairy farm case study.	93
18	Proposed scenarios (Q SII, Q SIII and Q SIV) of	
	cropping pattern compared with Q SI as base run	
	scenario in winter and summer seasons of Qena dairy	
	farm case study.	97
19	Economic efficiency all over the year of Qena dairy	
	farm case study.	99

LIST OF FIGURES

No.		Page
1	Conceptual meaning of a system	4
2	Studying system approach	8
3	The common cropping calendars in Egypt	20
4	Types of models of livestock systems	37
5	The methodology of simulation.	39
6	Modular structure of Dairy Wise.	40
7	The components, inter-relations between components,	
	and disciplinary sections of the integrated model.	41
8	Egypt governorates map and the studied area into the	
	cycle.	46
9	Schematic of computational model plan for dairy animal	
	feeding performance.	50
10	The cluster model summary.	56
11	Percentages of the cultivated crops of El-Beheira cluster	
	over the year.	68
12	Percentages of the cultivated crops of Qena cluster over	
	the year.	68
13	Percentages of the cultivated crops of Mix cluster over	
	the year.	70