

Mansoura University Faculty of Agriculture Animal Production Department

STUDIES ON THE EFFECT OF NITRATE ON THE FARM ANIMALS

By

ELSayed Gab Alla Elshafey

B. Sc. Agric. Sci. (Soil Science), Fac. of Agric., Cairo Univ., (2008). M. Sc. Agric. Sci. (Soil Science Department), Fac. of Agric., Cairo Univ., (2015).

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree

> of Doctor of Philosophy in Agricultural Sciences (Animal Production).

Supervisors

Prof. Dr. Eman H. M. Maklad Prof. of Animal Nutrition Animal Production Department Faculty of Agriculture,

Mansoura University, Egypt.

Prof . Dr. Hady Fathy Abbas Motawe Head Researcher of poultry Nutrition,

Regional Center for Food and Feed,

Agric. Res. Center.

Giza, Egypt.

Arab Republic of Egypt Mansoura University Faculty of Agriculture (2020)

LIST OF CONTENTS

Contents	Page
INTRODUCTION	1 – 7
REVIEW OF LITERATURE	8 - 39
2.1. Improving N utilization by farm animals	8
2.1.1. Nitrogen fraction for different digestibilities and growth pattern	9
2.1.2. Balance of carbohydrate and protein in the diet	11
2.1.3. Feeding feedstuffs contain nitrate to livestock	13
2.1.4. Nitrate toxicity in livestock	15
2.2. Effect of feed additives in diets for livestock	18
2.2.1. Effects of addition Sodium sulfate in diets	19
2.2.2. Effect of addition betonies in the diet	21
2.2.3. Effect of addition probiotics in the diets	23
2.2.4. Effect of addition prebiotics in the diets	27
2.3. Feeding growing rabbits	29
2.3.1. Ration formulation of growing rabbits	29
2.3.2. Nutrients digestibility in grown rabbits	30
2.3.3. Caecal fermentation in growing rabbits	31
2.3.4. Biochemical parameters of blood and rabbit health	33
2.4. Performance of the growing rabbits	35
2.4.1. Feed digestion and growth performance	35
2.4.2. The feed conversion in rabbit production	37
MATERIALS AND METHODS	39
3.1- Experimental animals and management	39
3.2- Feed additions	39
3.3- Experimental diets and design	40
3.4- Parameters of productive performance	43
3.4.1- Growth performance parameters	43
3.4.2- Carcass evaluation	43

Contents	Page
3.4.3- Economic efficiency	43
3.5- Digestibility trials	44
3.5.1- Chemical analysis and procedures	44
3.6- Parameters related to fermentation in the caecum	45
3.6.1- pH values	45
3.6.2- Total VFA concentration	45
3.6.3- Ammonia – N concentration	45
3.7- Blood parameters	45
3.8- Statistical analysis	46
RESULTS AND DISCUSSION	47
4.1 Growth performance and economic efficiency	47
4.1.1 Effect of feeding experimental diets on live body weight (g) from	47
7 to 14 weeks of age	47
4.1.2- Effect of feeding experimental diets on average daily gain (g/h	52
4.1.3- Effect of feeding experimental diets on average dry matter	55
intake (g/h/d)	55
4.1.4 Effect of feeding experimental diets on average feed conversion	60
(dry matter intake (g) / daily gain (g))	00
4.1.5 Effect of feeding experimental diets on some carcass	64
characteristics of growing rabbits	04
4.2- Digestibility trials	69
4.2.1-Formulation and chemical composition of the experimental diets	69
4.2.2-Effect of feeding experimental diets on dry matter intake,	
nutrients digestibility, digested nutrients and feeding values as DM	70
(%)	
4.3 Caecum fermentation	82
4.3.1 pH values	82
4.3.2 Total VFA concentration	83
4.3.3 Ammonia - N concentration	84
4.4 Effect of feeding the experimental diets on same blood parameters	87

Contents	Page
SUMMARY	96
CONCLUSION	103
REFERENCES	104
ARABIC SUMMARY	

LIST OF TABLES

Table	Page
Table (1): Ingredients of the experimental basal diets	41
Table (2): Chemical composition of the experimental diets	42
Table (3): Effect of feeding experimental diets on live body weight (g) from7 to 14 weeks of feeding	50
Table (4): The interaction between feeding experimental diets on live body weight (g) from 7 to 14 weeks of feeding	51
Table (5): Effect of feeding experimental diets on average daily gain (g/h/d)	53
Table (6): The interaction between feeding experimental diets on average daily gain (g/h/d)	54
Table (7): Effect of feeding experimental diets on average dry matter intake (g/h/d)	58
Table (8): The interaction between feeding experimental diets on average dry matter intake (g/h/d)	59
Table (9): Effect of feeding experimental diets on feed conversation (dry matter intake g / g daily gain)	62
Table (10): The interaction between feeding experimental diets on feed conversation (dry matter intake g / g daily gain)	63
Table (11 Effect of feeding experimental diets without or on some Carcass characteristics of growing rabbits	66
Table (12): The interaction between feeding experimental diets on some Carcass characteristics of growing rabbits	67
Table (13): Effect of feeding experimental diets on the economic efficiency of growing rabbits	68
Table (14): Effect of feeding experimental diets on nutrient digestibility and feeding value	72
Table (15): The interaction between feeding experimental rations on nutrient digestibility and feeding values	73
Table (16): Effect of feeding experimental rations on caecum parameters	85
Table (17): The interaction between feeding experimental rations on caecum parameters	85
Table (18): Effect of feeding experimental rations on some blood parameters of experimental rations	91
Table (19): The interaction between feeding experimental rations on some blood parameters of experimental rations	92

LIST OF FIGURE

Figure	Page
Fig. (1) : Effect of feeding experimental diets on the increasing body weight (g)	49
Fig. (2) : Effect of feeding experimental diets on the average daily gain (g/d)	56
Fig. (3) : Effect of feeding experimental diets on the average feed conversion	61
Fig. (4) : Effect of feeding experimental diets on the average relative economic efficiency %	65
Fig. (5) : Effect of feeding experimental diets on the average dry matter intake (g/d)	74
Fig.(6): Effect of feeding experimental diets on the average dry matter digestibility %	74
Fig. (7): Effect of feeding experimental diets on the average organic matter digestibility %	74
Fig. (8): Effect of feeding experimental diets on the average crude protein digestibility %	75
Fig.(9): Effect of feeding experimental diets on the average crude fiber digestibility %	75
Fig.(10): Effect of feeding experimental diets on the average ether extract digestibility %	75
Fig. (11): Effect of feeding experimental diets on the average nitrogen free extract digestibility %	76
Fig (12) : Effect of feeding experimental diets on the average neutral detergent fiber digestibility %	76
Fig (13) : Effect of feeding experimental diets on the average acid detergent fiber digestibility %	76
Fig (14): Effect of feeding experimental diets on the average hemicellulose digestibility %	77
Fig (15): Effect of feeding experimental diets on the average cellulose digestibility %	77
Fig (16): Effect of feeding experimental diets on the average non fibrous carbohydrate digestibility %	77
Fig (17): Effect of feeding experimental diets on the average digested crude protein %	78
Fig. (18): Effect of feeding experimental diets on the average digested crude fiber %	78
Fig. (19): Effect of feeding experimental diets on the average digested ether extract %	78
Fig. (20): Effect of feeding experimental diets on the average digested nitrogen free extract %	79
Fig. (21): Effect of feeding experimental diets on the average total digestible nutrients %	79

Figure	Page
Fig. (23): Effect of feeding experimental diets on the average total digestible nutrients intake (g/d)	80
Fig. (24): Effect of feeding experimental diets on the average digested energy (Kcal/Kg)	80
Fig. (25): Effect of feeding experimental diets on the average digested energy intake (Kcal/d)	80
Fig. (26): Effect of feeding experimental diets on the average digested energy intake/digested crude protein intake	81
Fig. (27): Effect of feeding experimental diets on the average PH in the caecum	86
Fig. (28): Effect of feeding experimental diets on the average total volatile fatty acids in the caecum	86
Fig. (29): Effect of feeding experimental diets on the average NH ₃ concentration in the caecum	86
Fig. (30): Effect of feeding experimental diets on the average glucose concentration in the blood	90
Fig. (31): Effect of feeding experimental diets on the average protein concentration in the blood	90
Fig. (32): Effect of feeding experimental diets on the average urea-N concentration in the blood	90
Fig. (33): Effect of feeding experimental diets on the average of creatinine concentration in the blood	93
Fig. (34): Effect of feeding experimental diets on the average of AST concentration in the blood	93
Fig. (35): Effect of feeding experimental diets on the average of ALT concentration in the blood	93
Fig. (36): Effect of feeding experimental diets on the average of AST / ALT ratio in the blood	94
Fig. (37): Effect of feeding experimental diets on the average of ALP in the blood	94
Fig. (38): Effect of feeding experimental diets on the average of GGT in the blood	95
Fig. (39): Effect of feeding experimental diets on the average of MDA in the blood	95

Abstract

STUDIES ON THE EFFECT OF NITRATE ON THE FARM ANIMA

The experimental field of this study was running at the Experimental Station of the Poultry Production Department, Faculty of Agriculture, Mansoura University.

The current study was conducted to study the possibility of feeding diets with or without sodium nitrate by adding sodium sulfate, clay or yeast and prebiotics to improve rabbit performance.

Ninety, 7 weeks' old weaning New Zealand White (NZW) rabbits with average live body weight (LBW) 745 g were used in this study.

Rabbits were randomly distributed into 10 equal experimental groups; each contained three equal replications. Each replicate group (3 rabbits) was housed in a separate cage with the following dimensions $(50\times50\times45 \text{ cm})$ for length, width and height, respectively. Rabbits were fed their respective experimental diets from 7 to 14 weeks of age. Feed and water were offered *ad libitum* throughout the experimental period. The values of live body weight and feed intake were recorded on a replicate group basis and thus daily weight gain and feed conversion were also calculated.

This study revealed that the impaired observed in rabbits fed the highest levels of fiber might be explained by higher fermentation losses in caecum together with an insufficient glucose from the gut to meet the requirements, while the importance of the amino acids depends on the efficiency of microbial protein synthesis. These observations are in agreement with the present results of fiber and CP digestibility of the experimental diets and on the TDNI and DEI.

The DCPI g/d was higher with feeding on R_1 , R_5 and R_7 , TDNI g/d was higher with R_1 , DE Kcal/Kg was higher with feeding on R_4 and R_9 , DEI Kcal/d with R_1 and R_4 , DEI/DCPI increased with feeding on R_4 , R_6 .

More studies are needed to find out the best feed additives to be used at different levels as well as at higher nitrate levels than the use herein in the different farm animals especially for ruminants.