

Suez Canal University Faculty of Veterinary Medicine Department of Fish Diseases & Management

Studies on the Prevailing Internal Parasitic Diseases in Some

Marine Fishes in Ismailia Governorate

Thesis submitted by

Radwa Ismail Ali Gaafar

(M.V.Sc, 2015)

For

The Ph. D. of Veterinary Science, Fish Diseases and Management

Thesis Submitted to

Faculty of Veterinary Medicine, Suez Canal University

Supervision committee

Prof. Dr.

Ismail Abd El-Moneim Mohamed Eissa

Maather Mohammed Mounir Taha El- Lamie

Prof. and Head Dept. of Fish Diseases

and Management

Faculty of Vet. Medicine, Suez Canal University

Ass. Pro. of Fish Diseases and Management

Faculty of Vet. Medicine, Suez Canal University

Prof. Dr.

Mona Mohamed Abd El-Wahab

Head Researcher of food hygiene

Animal Health Research Institute, Ismaïlia Provincial Lab.

(2020)

Dr.

AUTHOR	Radwa Ismail Ali Gaafar
TITLE	Studies on the Prevailing Internal Parasitic Diseases in Some
	Marine Fishes in Ismailia Governorate
FACULTY	Faculty of Veterinary Medicine
DEPARTMENT	Fish Diseases and Management
LOCATION	Ismailia
UNIVERSITY	Suez Canal University
DEGREE	PHD
DATE	2020
LANGUAGE	English
SUPERVISION	Prof. Dr. Ismail Abdel-Moneim Mohamed Eissa
COMMITTEE	Prof. Maather Mohammed Mounir Taha El-l-Lamie
	Prof. Dr. Mona Mohamed Abdel-Wahab
English Abstract	

This study has been applied on a total of (400) marine fish of five species (100 Alepes djedaba, 100 Dicentrarchus labrax, 100 Argyrosomus regius, 40 Saurida undosquamis and 60 Siganus revulatus) of different body weights and lengths which were collected in different seasons from Ismailia Governorate from April 2018 to December 2019. The examined fish showed no pathognomonic clinical abnormalities and were apparenently normal. Some Argyrosomus regius infested with digenea showed abdominal distention, pale coloration and emaciation. Affected Dicentrarchus labrax with digeneaniasis showed hemorrhagic areas on operculum, abrasion, ulcerations of fins and abdominal distention. On the other hand, liver was hemorrhagic and fatty in some examined Argyrosomus regius, slight marbling of gills with excessive mucus secretion, and slight abdominal bulging were also recorded. The total prevalence of infestation was 21 %. The highest percentage was in Saurida undosquamis 30% followed by Dicentrarchus labrax 20%, Alepes djedaba was 19%, in Argyrosomus regius 17% and then Siganus revulatus 11.66%. The isolated parasites were digenea (Erilepturus hamati, Erilepturus tiegsi, Erilepturus lemeriensis, Acanthostomum spinices, Sclerodistomum sp. and Lecithochirium fusiformi), larval cestodes (Pseudogrillotia sp. and Callitetrarhynchus gracilis), Nematodes(Hysterothylacium aduncum and Procamallanus inopenatus) and acanthocephalan parasites (Neohydinorhynchus macrospinosus). The histopathological alterations were recorded and discussed.

List Of Contents

Contents	Page
Introduction	1-3
Literature Review	4-26
Material And Methods	27-37
Results	38-77
Discussion	78-88
Conclusions	89
Summary	90-92
References	93-114
Arabic Summary	1-2

List of Figures

Figures	Page
Fig (1): A- Alepes djedaba , B- Saurida undosquamis , C -Siganus revulatus D- Dicentrarchus labrax and E- Argyrosomus regius .	27
Figure (2): Argyrosomus regius showing abdominal distention and palness.	
Figure (3): <i>Dicentrarchus labrax</i> showing hemorrhage at the base of fins .	
Figure (4) Dicentrarchus labrax showing pale liver.	
Figure (5) Argyrosomus regius showing hemorrhagic and fatty liver.	
Figure (6) Argyrosomus regius showing hemorrhagic liver (arrow).	
Figure (7) Saurida undosquamis showing paleness of liver with petechial hemorrhage, enlargement and congestion of intestine.	41
Figure (8) Saurida undosquamis showing presence of encapsulated plerocercoid of <i>Trypanorhyncha sp</i> in the body cavity.	
Fig (9):Total prevalence of parasitic infestation among the examined fishes.	43
Fig (10): Total prevalence of Digenetic Parasitic infestation among examined fishes	
Fig(11): Total prevalence of cestodiasis among the examined fishes.	46
Fig (12): Total prevalence of nematodiasis among the examined fishes.	47
Fig (13): Total prevalence of Acanthcephalosis among the examined fishes .	48
Fig (14): Seasonal prevalence of internal parasitic infestation among the examined fishes .	49
Fig (15): Seasonal prevalence of digeneasis among the examined fishes .	51
Fig (16): Seasonal prevalence of cestodiasis parasitic infestation among the examined fishes .	52

Figures	Page
Fig (17): Seasonal prevalence of nematodiasis among the examined fishes .	54
Fig (18): Seasonal prevalence of Acanthcephalosis among the examined	55
fishes .	
Fig (19) : Heavy infestation of digenetic trematodes . A- Isolated from one	56
infested D. labrax B- Isolated from one infested Argyrosomus regius.	
Fig.(20) Erilepturus hamati (Yamaguti, 1934). A: stained with Semichon's	
acetocarmine. B: unstained fluke .	
OS: Oral sucker, Ph: Pharynx, Vs: Ventral sucker, V: Vitellaria, O: Ovary, T:	30
testes IC: intestinal caeca, EC: evaginated ecsoma .	
Fig(21) A&B- Erilepturus hamati isolated from stomach of one D. labrax	58
fish .	30
Fig.(22) : Stained Erilepturus tiegsi (Woolcock, 1935) with Semichon's	
acetocarmine . OS: Oral sucker, Prp: prepharynx, Ph: Pharynx, Vs: Ventral	
sucker, U: uterus, V: Vitellaria, O: Ovary, T: testes E: eggs, Ic:Intestinal	59
cecae,Ec: Evaginated ecsoma.	
Fig. (23): Erilepturus sp. (Yamaguti, 1934) A. Unstained fluke B.	
Stained fluke . with Semichon's acetocarmine and C. Different Erilepturus	61
sp . isolated from one infested Argyrosomus regius. OS: Oral sucker, Ph:	
Pharynx, Vs: Ventral sucker, V: Vitellaria, O: Ovary, T: testes IC: intestinal	
caeca, EC: evaginated ecsoma.	
Fig (24): Stained Erilepturus lemeriensis (Tubangui and Masilungan,	
1935) with Semichon's acetocarmine . OS: Oral sucker, Ph: Pharynx, Vs:	\sim
Ventral sucker, V: Vitellaria, O: Ovary, T: testes IC: intestinal caeca, EC:	62
evaginated ecsoma.	
Fig.(25): Stained Acanthostomum spiniceps (Loose, 1899) with Semichon's	
acetocarmine. OS: Oral sucker, Prp: prepharynx, Ph: Pharynx, Vs: Ventral	64
sucker, U: uterus, V: Vitellaria, O: Ovary, T: testes E: eggs .	
Fig.(26) : Unstained Lecithochirium fusiforme (Lühe, 1901) . OS: Oral	65

Figures	Page
sucker, Ph: Pharynx, Vs: Ventral sucker, U: uterus, V: Vitellaria, O: Ovary,	
T: testes. IC:Intestinal Cecae,EC: Evaginated ecsoma, TG:Terminal genetalia.	
Fig (27): Unstained Sclerodistomum sp. (Looss, 1912). isolated from	
intestine of Saurida undosquamis. OS: Oral sucker, Ph: Pharynx, Vs: Ventral	67
sucker, U: uterus, V: Vitellaria, T: testes.	l
Fig (28): Unidentified digenetic fluke isolated from mucosal scraping of	
gastrointestinal tract of Alepes djedaba .	67
Fig (29): Pseudogrillotia sp. A. Whole stained Pseudogrillotia sp. (Dollfus,	
<u>1969</u>) with Semichon's acetocarmine, B. Scolex of <i>Pseudogrillotia sp.</i> and	68
C. Bulbs organ or Retractor muscles . BO: bothridia, T: tentacles, TS: tentacle	00
sheath, B: bulbs, PB: postbulbosa.	
Fig (30): Stained Callitetrarhynchus gracilis (Rudolphi, 1819) with	
Semichon's acetocarmine. A. Encapsulated plerocercoid (blastocysts). B.	
Scolex of Callitetrarhynchus gracilis. And C. whole cestode . BS:	70
blastocysts, BO: bothridia, T: tentacles, TS: tentacle sheath, B: bulbs, PB:	
postbulbosa.	
Fig(31): Adult Hysterothylacium aduncum (Rudolphi, 1802). isolated	
from intestine of D. labrax. A.Anterior part.B.High magnifications of head	
region.C.female posterior end. D.male posterior part. VI: ventrolateral lips,	71
Il: interlabium, Ep: excretory pore, Nr: nerve ring, Ao: Anal opening, spr:	
spinose process, S: spicules.	
Fig (32): Procamallanus inopenatus (Travassos, 1928) A. Female	
anterior part , B. High magnifications of female cephalic end and buccal	
capsule , C. female posterior end , D. male anterior part , E. High	
magnifications of male cephalic end. and F. male posterior end. M: mouth,	72
BC: buccal capsule, BR: basal ring, Moe: muscular oesophagus, Nr: nerve	
ring, Goe: glandular oesophagus, Sc: Striated cuticle Ao: anal opening, S:	
spicule, ap: anal papillae, Spr: spinose process.	l

Figures	Page
Fig (33): Stained Neohydinorhynchus macrospinosus Amin and Nahhas	
(1994). with Semichon's acetocarmine . A. Whole male Neohydinorhynchus	I
macrospinosus , B. Whole female , C. anterior part showed the evaginated	I
proboscis and proboscis sheath , D. high magnification of thorny proboscis	73
with hooks , E.male posterior end and F. female posterior end. Tp: Thorny	I
proboscis, Ps: proboscis sheath, Bc: body cavity, T: testes, Cg: Cement gland,	I
Sp: Saeffigen,s pouch, B: bursa Ob: Ovarian balls.	
Fig (34): Histopathological alterations : A.Arygroromus regius, stomach	
showing congestion of blood vessels, leukocytic infiltrations in both mucosa	1
and submucosa with degeneration and necrosis of gastric mucosa. (X 200).	1
H&E. B.Saurida undosquamus, stomach showing mechanical destruction of	I
the gastric mucosa along with congestion and mild submucosal leucocytic	I
infiltrations. (X 200). H&E. C. Dicentrachus labrax, stomach showing	75
destruction, necrosis and sloughing of gastric mucosa along with submucosal	I
and serosal congestion and leucocytic infiltrations. (X 200). H&E. and $\boldsymbol{D}_{\boldsymbol{\cdot}}$	I
Arygroromus regius, intestine showing severe mechanical destruction of	I
intestinal mucosa and extensive leukocytes infiltration. (X 200). H&E.	
Fig (35): Histopathological alterations: A. Arygroromus regius, spleen	
showing mild hyperplasia of melanomacrophage centers, and mild necrosis of	I
lymphocytes of white pulp. (X 200). H&E. B. Alepes dejaba, spleen	I
showing severe multifocal hemorrhages and congestion. (X 200). H&E.	I
C.Arygroromus regius, liver showing sever congestion of blood vessels,	I
hyperplasia of hepatopancreas and mild vacuolar degeneration of	76
hepatocytes. (X 200). H&E. D.Saurida undosquamus , liver showing	1
congestion of blood vessels and mild degeneration and focal necrosis of	I
hepatic cells. (X 200). H&E. E. Dicentrachus labrax, liver showing sever	I
congestion of hepatic blood vessels and mild focal degeneration of	
hepatocytes. (X 200). H&E	

List of Tables

Tables	Page
Table (1): Number of the examined fish species per season .	
Table (2): The number , body weight and length of the examined fishes .	29
Table (3): Total prevalence of parasitic infestation among the examined fishes.	
Table (4): Total prevalence of digeneansis among the examined fishes .	
Table (5): Total prevalence of cestodiasis among the examined fishes .	
Table (6): Total prevalence of nematodiasis among the examined fishes .	46
Table (7): Total prevalence of Acanthcephalosis among the examined fishes .	
Table (8): Seasonal prevalence of internal parasitic infestation among the examined fishes .	
Table (9): Seasonal prevalence of Digeneasis among the examined fishes .	
Table (10): Seasonal prevalence of cestodiasis among the examined fishes.	
Table (11): Seasonal prevalence of nematodiasis among the examined fishes.	
Table (12): Seasonal prevalence of Acanthcephalosis among the examined fishes .	54
Table (13): Seasonal prevalence of different internal parasitic infestations among the examined fishes .	56