Menoufia University Faculty of Agriculture Department of Poultry and Fish Production

جامعة المنوفية كليـة الزراعة قسم إنتاج الدواجن والأسماك

Effect of dietary nano-selenium on productive, immunological performance, oxidation resistance and selenium deposition in tissue for laying hens

By

Amr Mahmoud Ibrahim Mohamed Hassan

B.Sc. Agricultural Sciences, Menoufia University, 2011 Researcher-Academy of Scientific Research and Technology (ASRT) Scientists for Next Generation (SNG)

A THESIS

Submitted in Partial Fulfilment

of the Requirements

for the Degree

of

Master of Science

In

"Poultry Production"

Department of Poultry and Fish Production Faculty of Agriculture - Menoufia University Shibin El-kom

Thesis Title: Effect of dietary nano-selenium on productive, immunological performance, oxidation resistance and selenium deposition in tissue for laying hens.

Degree: M.Sc. in Poultry Production

Name: Amr Mahmoud Hassan

ABSTRACT

The experiment was designed to study the effect of dietary nanoselenium on productive, immunological performance, oxidation resistance and selenium deposition in tissue of laying hens. A total number of 180 laying hens of Silver Montazah strain were used. Layers were divided randomly into six treatments. Five nano-selenium diet concentrations (200, 160, 120, 80 and 40 mg/ton for treatments (T2, T3, T4, T5 and T6), respectively. The treatment (T1) was used as control with 200 mg/ton diet sodium selenite.

The results were discussed and summarized as follows:

- 1. Application of nano-selenium in layer diets was effective in increasing egg number, egg mass, total serum protein, and albumin.
- 2. Also, nano-selenium improved some immunological traits, feed conversion, some egg quality traits and some antioxidant enzymes traits.
- 3. The optimum level of nano-selenium was 200 mg/ton diet, which recorded 5.40g feed/g egg mass compared to 9.24g feed / g egg mass in control treatment (200 mg/ton diet)
- 4. Application of 200 mg nano-selenium /ton diets were significantly increased total cholesterol, triglycerides, heterophils (H%) and H/L ratio.Where, low density lipoprotein was significantly decreased compared to other doses of nanoislimin
- 5. The concentration of selenium in liver, breast meat and whole egg were 30.9, 40.5 and 102.3% higher in layers fed 200 mg/ton diet nano-selenium compared to layers fed 200mg/ton sodium selenite.
- 6. layers fed 200mg/ton diet nano-selenium had 5.6 % and 5.4 % higher in dressing and edible meat, respectively, compared to layers fed 200 mg/ton sodium selenite.

Key Words: Laying hens, nano-selenium, sodium selenite, productive, physiological, immunological and carcass traits.

List of Content

CONTENTS	PAGE
1. INTRODCTION	1
2. REVIEW OF LITERATURE	4
2.1. What is Nanotechnology	4
2.2. Application of Nano-technology in animal and poultry	4
Feeding	
2.3. Forms of selenium	5
2.4.Effect of different Nano-selenium levels on egg	6
production traits in layers.	
2.5. Effect of different nano-selenium levels on both feed	7
intake (g/d) and feed conversion rate in layers.	
2.6. 2.6. Effect of different nano-selenium levels on live	9
body weight during laying period in layers.	
2.7. Effect of different nano- selenium levels on egg quality	10
traits during laying period in chickens.	
2.8. Effect of different nano-selenium levels on the	11
immunological traits of layers hens.	
2.9. Effect of different nano-selenium levels on glutathione	12
peroxidase activity (GSH-PX).	
2.10. Effect of different nano-selenium levels on some	13
hematological and physiological traits.	
2.11. Effect of different selenium levels on protein and	15
lipids profile	
2.12. Effect of different nano-selenium levels on slaughter	15
traits.	1.6
2.13. Effect of different levels of Nano-selenium on	16
selenium concentration in eggs, liver and meat.	10
2.14. Effect of different nano-selenium levels on	18
histological examination.	10
3. MATERIALS AND METHODS	19
3.1 chicken stock.	19
3.2. Birds housing and management.	19
3.3 Experimental design and treatments.	$\frac{20}{22}$
3.4. Source and forms of selenium.	$\frac{22}{22}$
3.5. Mixing of nano – selenium particles in diet.3.6. Studied traits.	22
	22
3.6.1.1 Egg Number (EN).	22
3.6.1.2. Egg weight (EW).	23
3.6.1.3 Egg mass (EM). 3.6.2 Average Monthly of Laver Body Weight	
3.6.2. Average Monthly of Layer Body Weight .	23

3.6.3 Average feed intake of layers.	23
3.6.4. Average feed conversion ratio (FCR) of layers.	23
3.6.5. Egg quality traits studies.	24
3.6.5.1 External egg quality traits.	24
1- Egg weight (EW).	24
2- Egg shape index (E. S. I).	24
3.6.5.2 Internal egg quality traits.	24
3.6.5.2.1 Shell quality traits.	24
1. Shell weight (S. W).	25
2. Shell percentage (sh%).	25
3. Shell thickness (S. T.).	25
3.6.5.3 Yolk quality traits.	25
a. Yolk weight (Y. W).	25
b. Yolk percentage (Y %).	25
c. Yolk height.	25
d.Yolk index.	25
e. Yolk color.	25
3.6.5.4 Albumen quality traits.	26
a. Albumen weight (Al. W).	26
b. Albumen percentage (Al %).	26
c. Albumen height (Al. H).	26
3.6.5.5 Haugh unit score (H. U).	26
3.6.6 Immunological study.	26
3.6.7. Hematological and physiological determinations.	27
3.6.7.1. Determination of hemoglobin (HB).	27
3.6.7.2. Determination of red blood cells count.	27
3.6.7.3. Determination of hematocrit value (PCV%).	27
3.6.7.4. Determination of red blood cells indices.	28
1- Mean cell volume determination (MCV).	28
2- Mean cell hemoglobin determination (MCH).	28
3- Mean cell hemoglobin concentration (MCHC).	28
3.6.7.5. Counting of white blood cells (WBC).	28
3.6.7.6. Differential leukocyte cells counting.	29
3.6.7.7. Total plasma protein and albumin.	29
3.6.7.8. Total plasma cholesterol.	29
3.6.7.9. Plasma triglyceride, LDL HDL and total lipid	29
concentrations.	
3.6.7.10. Liver and kidney function (ASTt and ALT.	29
measurements).	
3.6.7.11. Total antioxidant capacity.	29
3.6.8. Slaughter traits.	30

_____ v)_____

3.6.9. Histological examination.	30
3.6.10. Statistical analysis.	30
4. RESULTS AND DISCUSSION	32
4.1. Egg production traits.	32
4.1.1. Egg production traits during the first period.	32
4.1.2. Egg production traits during the second period.	33
4.1.3. Egg production traits during the third period.	34
4.1.4. Egg production traits the whole experimental	35
period.	
4.2. Effect of different source and levels on daily feed	38
intake (g/d).	
4.3. Effect of different sources and levels of selenium on	39
feed conversion (g feed/g egg mass).	
4.4. Effect of different selenium, sources and levels on live	41
body weight in layers.	
4.5. Effect of different selenium sources and levels on egg	43
quality traits in layers.	
4.5.1. External egg quality traits.	43
4.5.2. Internal egg quality traits.	44
4.6. Effect of different selenium sources and levels on	49
some cellular and humoral immunity to H5N1 virus in	
Silver Montazah layers.	
4.7. Effect of different selenium sources and levels on	52
some hematological traits.	
4.8. Effect of different selenium sources and levels on	55
plasma total proteins.	
4.9. Effect of different selenium sources and levels on	56
protein and lipids profile in silver Montazah layers	
4.10. Effect of different selenium sources and levels on the	60
activity of some liver, enzymes	
4.11. Effect of different selenium sources and levels on	63
selenium resedual in liver, meat and whole egg in	
Silver Montazah layers	
4.12. Effect of different selenium sources as levels on	66
carcass characteristics in Silver Montazah layers.	<u> </u>
4.13. Effect of different selenium sources and levels on	68
histological examination of liver in Silver Mantazah	
layers.	70
5. Summary and Conclusion	73
5.1. Egg production traits during the whole experimental	72
Period.	73
5.2. Daily feed intake (g/d) and feed conversion (g feed/g	74

egg mass)	
5.3. Live body weight.	74
5.4. Egg external and internal quality traits.	74
5.5. Cellular and humeral immunity to H5N1 virus.	74
5.6. Some hematological traits .	75
5.7. Plasma total proteins .	75
5.8. Protein and lipids profile.	75
5.9. Activity of some liver Enzymes and Creatinins .	75
5.10. Selenium residual in liver, breasr meat and whole	76
egg.	
5.11. Charcass characteristics.	76
5.12. Histological examination of liver.	76
5.13. Conclusion.	77
REFERENCES	78

List of Tables

Table No.	Content	Page No.
(1)	Composition and calculated analysis of the basal diet.	20
(2)	Treatments and the number of layers in each treatment and replicate.	21
(3)	Effect of different selenium sources and levels during the first month of the experimental period on egg production traits in Silver Montazah layers.	33
(4)	Effect of different selenium (Se) sources and levels during the second month of the experimental period on egg production traits in Silver Montazah layers.	34
(5)	Effect of different selenium sources (Se) and levels during the third month of the experimental period on egg production traits in Silver Montazah layers.	35
(6)	Effect of different selenium (Se) sources and levels during the whole experimental periods (3 months) on egg production traits in Silver Montazah layers.	36
(7)	Effect of different selenium (Se) sources and levels during the whole experimental period (3 months) on feed intake (g/b) in Silver Montazah layers.	39
(8)	Effect of different selenium (Se) sources and levels during the whole experimental period (3 months) on feed conversion (g faed/g egg mass) in Silver Montazah layers.	40
(9)	Effect of different selenium (Se) sources and levels during the whole experimental period (3 months) on live body weight in Silver Montazah layers.	42
(10)	Effect of different selenium sources and levels on external egg quality traits in Silver Montazah layers.	44
(11)	Effect of different selenium sources and levels on internal egg quality traits in Silver Montazah layers.	46
(12)	Effect of different selenium sources and levels on some cellular and humoral immunity to H_5N_1 virus in Silver Montazah layers.	50
(13)	Effect of different selenium sources and levels on some hematological traits in Silver Montazah layers.	53
(14)	Effect of different selenium sources and levels on plasma total proteins in Silver Montazah layers.	56
(15)	Effect of different selenium sources and levels on protein and lipids profile in Silver Montazah layers.	57
(16)	Effect of different selenium sources and levels on some liver and kidney functions in Silver Montazah layers.	61
(17)	Effect of different selenium sources and levels on selenium residual in liver, meet and whole egg in Silver Montazah layers.	64
(18)	Effect of different selenium sources and levels on carcass characteristics (% of body weight) in Silver Montazah layers.	67

List of Figures

Fig No.	Content	Page No.
(1)	Effect of different selenium (Se) sources and levels during the whole experimental periods (3 months) on egg production traits in Silver Montazah layers	36
(2)	Effect of different selenium (Se) sources and levels during the whole experimental periods (3 months) on egg production traits in Silver Montazah layers	37
(3)	Effect of different selenium (Se) sources and levels during the whole experimental period (3 months) on feed conversion (g faed/g egg mass) in Silver Montazah layers	40
(4)	Effect of different selenium sources and levels on shell thickness (A) and shell weight % (B) during the experimental period. (T1 control, sodium selenite), T2, T3, T4, T5 and T6, had 200,120,80 and 40 mg/ton diet, Nano- slenium, respectivly.	47
(5)	Effect of different selenium sources and levels on albumen weight (%) (A) and yolk index (B) during the experimental period. (T1,control, sodium selenite),T2,T3,T4,T5 and T6, had 200,160,120,80 and 40 mg/ton diet Nano-selenium, respectively).	48
(6)	Effect of different selenium sources and levels on heterophiles (A) and Lymphocytes (B) percentages of different treatments.T1(control, sodium selenite), T2,T3,T4,T5 and T6 had 200,160,120,80 and 40 mg/ton diets Nano- selenium respectively	51
(7)	Effect of different selenium sources and levels on red blood cells (A) and hemoglobin (B) percentages of different treatments.T1(control) sodium selenite, T2,T3,T4,T5 and T6 had 200,160,120,80 and 40 mg/ton diets Nano- selenium respectively	54
(8)	Effect of different selenium sources and levels on total cholesterol (A) and total lipids (B) of different treatments. $T_1 = Control$ (Sodium selenite) T_2 , T_3 , T_4 , T_5 and T_6 had different levels of Nano-selenium	58
(9)	Effect of different selenium sources and levels on HDLP (A) and LDLP (B) of different treatments. T ₁ = Control (Sodium selenite) T ₂ , T ₃ , T ₄ , T ₅ and T ₆ had different levels of Nano-selenium.	59
(10)	Effect of different selenium sources and levels on AST (A) and Creatinine (B) of different treatments . $T_1 = Control$ (Sodium selenite) T_2 , T_3 , T_4 , T_5 and T_6 had different levels of Nano-selenium.	62
(11)	Effect of different selenium sources and levels on selenium concentration in liver (A), breast meat (B) and whole egg (C) of different treatments. $T_1 = Control$ (Sodium selenite) T_2 , T_3 , T_4 , T_5 and T_6 had different levels of Nano-selenium.	65

(12)	Effect of different selenium sources and levels on dressing (%) (A) and	67
	edible meat (%) (B) of different treatments.	
	T_1 = Control (Sodium selenite) T_2 , T_3 , T_4 , T_5 and T_6 had different	
	levels of Nano-selenium.	
(13)	Effect of sodium selenite (control treatment) at level of 200 mg/ton	
	diets of laying hens on liver.	68
(14)	Effect of Nano-selenium at level of 200 mg/ton diets of laying hens on	69
	liver (treatment 2).	
(15)	Effect of Nano-selenium at level of 160 mg/ton diets of laying hens on	70
	liver (treatment 3).	
(16)	Effect of Nano-selenium at level of 120 mg/ton diets of laying hens on	70
	liver (treatment 4).	
(17)	Effect of Nano-selenium at level of 80 mg/ton diets of laying hens on	71
	liver (treatment 5).	
(18)	Effect of Nano-selenium at level of 40 mg/ton diets of laying hens on	71
	liver (treatment 6).	