

Tanta University Faculty of Agriculture Department of Agricultural Botany

BIOLOGICAL AND CHEMICAL CONTROL OF SOME PEPPER ROOT-ROT PATHOGENS

^{By} Nahla Ismaeil Hefnawy EL-Feky

B.Sc. (Agric.) Tanta University, 2007 M.Sc. (Plant Pathology) Tanta University, 2013

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

In

AGRICULTURAL SCIENCES (Plant Pathology)

Department of Agricultural Botany Faculty of Agriculture Tanta University

2020

ABSTRACT

Title of Thesis	:	Biological and chemical control of some pepper root- rot pathogens
Student's Name	:	Nahla Ismaeil Hefnawy EL-Feky
Degree	:	Ph.D. in Plant Pathology, Department of Agricultural
		Botany, Faculty of Agriculture, Tanta University.
Date	:	2020

Sweet pepper (*Capsicum annuum* L.), represents one of the most important and economic vegetable crops in the world including Egypt. Root rot disease caused by several pathogens is considered the most dangerous disease on pepper yield of the entire world. The main goal of this study was to minimize the use of synthetic fungicide by fungal and bacterial isolates bioagents such as *Trichoderma* sp., *Penicilium* spp., Chaetomium spp., *Bacillus* sp. and *Pseudomonas* sp.

Additionally, the ability of these bioagents to produce chitinase, protease enzymes and hydrogen cyanide, were studied. Thirty different isolates of root rot pathogens were isolated and identified from infected pepper root collected from Kafr El-Sheikh governorate during 2016 and 2017 growing seasons. Further, PCR amplification of ITS gene region in the ten isolates of root rot pathogens were performed using universal ITS primers. Then the selected virulent isolates of root rot pathogens were sequenced and submitted in NCBI database with the accession numbers. The root rot fungal pathogens of pepper were identified as Fusarium solani, F. oxysporum, F. verticillioides, F. equiseti, F. incarnatum, F. chlamydosporum, F. equiseti strain CZCU, F. longipes, Macrophomina phaseolina and Lasiodiplodia theobromae based on its cultural, morphological and molecular characteristics. In laboratory, greenhouse and field experiments, T. harizianum (TH1, TH2), T.viride (TV1, TV2), B. subtilis (B₁, B2), *P. fluoresens* (P1, P2), *Penicilium* spp. (Peni.) and *chaetomium* spp. (Ch.) isolates as well as chemical fungicide (Hatric 6%) recorded significant reduction in root-rot disease intensity and enhanced vegetative growth of pepper plants compared with the control. Furthermore, we evaluate the efficiency of three fungicides and with two nanoparticles for their in vitro and in vivo capability to control pepper root rot disease in two growing seasons (2019 and 2020). The highest efficacy was recorded by Hatric 6% fungicide in both seasons. On the other hand, nano Zinc Oxide enhanced vegetative growth of pepper plants in both seasons compared with the control.

Based on the findings of this study, there is a possibility that these bioagents could be utilized as natural, safe and environmentally friendly fungicides to control root-rot disease in pepper.

CONTENTS

Page

I. INTRODUCTION	1
II. REVIEW OF LITERATURE	5
III. MATERIALS AND METHODS	31
IV. RESULTS AND DISCUSSION	57
IV.1.The frequency of fungi associated with pepper plants showed root rot symptoms during favorable environmental conditions	57
IV.2. Response of pepper cultivars to root-rot fungal pathogens under greenhouse conditions	60
IV.3.The response of pepper plants to infection by some root-rot pathogens under greenhouse conditions (Pathogenicity test)	63
IV.4. Molecular characterization of highly pathogenic isolates	65
IV.5. Biological controlIV.5.1. In vitro antagonistic effect of bio-agents against root-rot pathogensIV. 5. 2. The efficiency of selected fungal and bacterial isolates on root-rot disease in vivo	68 68
IV.5.2.1. Greenhouse experiment	76
IV.5.2.1.1. Effect of some bio-agents on pepper root-rot pathogens under greenhouse conditions	76
IV.5.2.1.2. Effect of bio-agents on root and shoot length of pepper plants infested with root-rot pathogens under greenhouse conditions	80
IV.5.2.1.3. Effect of bio-agents on the root and shoot dry weight of pepper plants infected with root-rot pathogens under greenhouse conditions	84

IV.5.2.2. Field experiments IV.5.2.2.1. Effect of bio-agents on disease severity of pepper root rot under field conditions	87
IV.5.2.2.2. Effect of bio-agents on vegetative growth traits of pepper under field conditions	90
IV.5.2.2.3. Effect of bio-agents on fruit fresh weight/plant under field conditions	92
IV.6. Enzymes activity of the tested bio-agents	94
IV.7. Chemical control IV.7.1. Effect of three fungicides on the linear growth of 10 isolates caused root rot disease in vitro tested at different concentrations.	99
IV.7.2. Fungicide sensitivity and 50% inhibitory concentration of mycelium growth (IC50) of ten pathogenic root-rot isolates	107
IV.7.3. Greenhouse experiment	110
IV.7.3.1. Effect of three fungicides at their IC50 on pepper root-rot pathogens under greenhouse conditions	110
IV.7.3.2. Effect of tested fungicides on root and shoot length (cm) of pepper infected with root-rot pathogens under greenhouse conditions	113
IV.7.3.3. Effect of tested fungicides on root and shoot dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	117
IV.8. Effect of two nanoparticles on the linear growth of 10 isolates caused root rot disease in vitro at different concentrations	121
IV.8.1. Nanoparticles sensitivity and 50% inhibitory concentration of mycelium growth (IC_{50}) of ten pathogenic root-rot isolates	129
IV.8.2.Greenhouse experiment IV.8.2.1. Effect of two nanoparticles at their IC ₅₀ on pepper root-rot pathogens under greenhouse conditions	131

Contents

IV.8.2.2. Effect of tested nanoparticles on root and shoot length (cm) of pepper infected with root-rot pathogens under greenhouse conditions	134
IV.8.2.3. Effect of the tested nanoparticles on root and shoot dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	137
IV.9. Field experiments	140
IV.9.1. Effect of three fungicides and two nanoparticles with the highest IC_{50} on disease severity under field conditions.	140
IV.9.2. Effect of three fungicides and two nanoparticles with the highest IC_{50} on vegetative growth traits of pepper under field conditions	142
IV.9.3. Effect of three fungicides and two nanoparticles with the highest IC_{50} on fruit fresh weight/plant under field conditions	145
V. SUMMARY	149
VI. REFERENCES	160
ARABIC SUMMARY	

LIST OF TABLES

No.		Page
1	Description of disease scale (0-4)	34
2	Nucleotide Sequence of the universal primers	36
3	Bio-agent isolates	38
4	The investigated fungicides, trade name, formula, common name, chemical group, chemical structure and IUPAC name used in the current study	50
5	Number and frequency percentage of incidence fungi from rotted roots of pepper plants cv. (California, Dolma and Top Star) during growing seasons (2016 and 2017) from Kafr El-Sheikh governorate	59
6	Reaction of ten pepper genotypes as severity index to root rot fungal pathogens after 45 days from transplanting under greenhouse conditions	62
7	Response of pepper plants cv. Top Star to infection by some of root rot isolated fungi after 45 of transplanting under greenhouse conditions	64
8	List of 10 highly pathogenic fungal isolates from rotted root of pepper plants collected from Kafr El-Sheikh Governorate	65
9	<i>In vitro</i> antagonistic effect (%inhibition) of bio-agents against root-rot pathogens	70
10	Effect of some bio-agents on % disease severity of pepper root-rot fungal pathogens under greenhouse conditions	78
11	Efficacy of some bio-agents on pepper root-rot pathogens under greenhouse conditions	79
12	Effect of bio-agents on root length of pepper plants infected with root-rot pathogens under greenhouse conditions.	82
13	Effect of bio-agents on shoot length of pepper infected with root-rot pathogens under greenhouse conditions	83

List of Tables

14	Effect of bio-agents on root dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions.	85
15	Effect of bio-agents on shoot dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	86
16	Effect of bio-agents on disease severity of root rot under field conditions	89
17	Effect of bio-agents on length, fresh and dry weight of root and shoot of pepper under field conditions	91
18	Effect of bio-agents on fruit fresh weight/plant and increase over control (%) under field conditions	94
19	Enzymes activity of tested bio-agents	97
20	Effect of three fungicides on the linear growth of 10 isolates caused root rot disease in vitro tested at different concentrations	101
21	IC ₅₀ values of tested fungicides against different isolates caused root-rot disease of pepper plant	109
22	Effect of three fungicides at their IC50 on pepper root- rot pathogens under greenhouse conditions	112
23	Effect of tested fungicides on root length (cm) of pepper infected with root-rot pathogens under greenhouse conditions	115
24	Effect of tested fungicides on Shoot length (cm) of pepper infected with root-rot pathogens under greenhouse conditions	116
25	Effect of tested fungicides on root dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	119
26	Effect of tested fungicides on Shoot dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	120

27	Effect of two nanoparticles on the linear growth of 10 isolate caused root rot disease <i>in vitro</i> tested at different concentrations	123
28	IC ₅₀ values of tested nanoparticles against different isolates caused root rot disease of the pepper plant	130
29	Effect of two nanoparticles at their IC ₅₀ on pepper root- rot pathogens under greenhouse conditions	133
30	Effect of tested nanoparticles on root length (cm) of pepper infected with root-rot pathogens under greenhouse conditions	135
31	Effect of tested nanoparticles on Shoot length (cm) of pepper infected with root-rot pathogens under greenhouse conditions	136
32	Effect of tested nanoparticles on root dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	138
33	Effect of tested nanoparticles on Shoot dry weight (g) of pepper infected with root-rot pathogens under greenhouse conditions	139
34	Effect of three fungicides and two nanoparticles with the highest IC_{50} on disease severity and efficacy under field conditions.	142
35	Effect of three fungicides and two nanoparticles with the highest IC_{50} on length, fresh and dry weight of root and shoot of pepper under field conditions	144
36	Effect of three fungicides and two nanoparticles with the highest IC ₅₀ on fruit fresh weight/plant and increase over control (%) under field conditions	147

LIST OF FIGURES

No.

1.	Maximum likelihood phylogenetic Tree 10 highly pathogenic fungal isolates from the rotted root of pepper plants collected from Kafr El-Sheikh governorate	67
2.	Similarity 10 highly pathogenic fungal isolates from rotted root of pepper plants collected from Kafr El- Sheikh governorate	67
3.	Inhibition of <i>Fusarium solani</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	71
4.	Inhibition of <i>L. theobromae</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	71
5.	Inhibition of <i>F. equiesti</i> growth by biological control agents{Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas</i> <i>fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	72
6.	Inhibition of <i>F. oxysporum</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	72
7.	Inhibition of <i>F. verticillioides</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	73

8.	Inhibition of <i>F. incaratum</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas</i> <i>fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	73
9.	Inhibition of <i>M. phaseolina</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas</i> <i>fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	74
10.	Inhibition of <i>F.chlamydosporum</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas</i> <i>fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	74
11.	Inhibition of <i>Fusarium equiseti</i> strain CZCU growth by biological control agents.{Control (C), <i>Trichoderma</i> <i>harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas fluorescens</i> (P1,P2) and <i>Bacillus</i> <i>subtilis</i> (B1,B2)} and Hatric 6% (F)	75
12.	Inhibition of <i>F. longipes</i> growth by biological control agents {Control (Co.), <i>Trichoderma harzianum</i> (TH1,TH2), <i>T. viride</i> (TV1,TV2), <i>Chaetomium</i> spp. (Ch.), <i>Penicilium</i> spp. (Peni.), <i>Pseudomonas</i> <i>fluorescens</i> (P1,P2) and <i>Bacillus subtilis</i> (B1,B2)} and Hatric 6% (F)	75
13.	Production of HCN from fungal and bacterial antagonists	98
14.	Inhibition of <i>F. solani</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan(K) with $40(A)$, 80(B) and 160 mgL ⁻¹ (C)	102
15.	Inhibition of <i>L. theobromae</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	102

16.	Inhibition of <i>F. equiesti</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C)	103
17.	Inhibition of <i>F. oxysporum</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	103
18.	Inhibition of <i>F. verticillioides</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	104
19.	Inhibition of <i>F. incarnatum</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	104
20.	Inhibition of <i>M. phaseolina</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	105
21.	Inhibition of <i>F. chlamydosporum</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	105
22.	Inhibition of <i>F. equiseti</i> strain CZCU mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C).	106
23.	Inhibition of <i>F. longipes</i> mycelial growth by fungicides (Control (Co.), Hatric (H), Metalaxyle (M) and Captan (K) with 40 (A) $,80$ (B) and 160 mgL ⁻¹ (C)	106
24.	Inhibition of <i>F. solani</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) $,80$ (B) and 160 (C) mgL ⁻¹)	124
25.	Inhibition of <i>L. theobromae</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻	104
26		124
26.	Inhibition of <i>F. equiseti</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻¹)	125
27.	Inhibition of <i>F. oxysporum</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide(ZnO) and	

Nano-silver (Ag) with 40(A), 80(B) and 160 (C)mgL⁻¹)... 125

28.	Inhibition of <i>F. verticillioides</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻¹)	126
29.	Inhibition of <i>F. incarnatum</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻¹)	126
30.	Inhibition of <i>M. phaseolina</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻¹)	127
31.	Inhibition of <i>F. chlamydosporum</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻¹).	127
32.	Inhibition of <i>F. equiseti</i> strain CZCU mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ⁻¹).	128
33.	Inhibition of <i>F. longipes</i> mycelial growth by nanoparticls (Control (Co.), Nano-Zinc Oxide (ZnO) and Nano-silver (Ag) with 40 (A) ,80 (B) and 160 (C) mgL ^{1}).	128
	,	