AFLATOXINS INHIBITORY MECHANISM OF ASPERGILLUS PARASITICUS USING BIOINFORMATICS

BY

MAI MOHAMED LABIB SHABAN

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHYLOSOPHY

in

Agricultural Science

(Genetics)

Department of Genetics

Faculty of Agriculture

Zagazig University

2020

ABSTRACT

Natural inhibition of toxins, pesticides and carcinogenic components is currently global scope to protect the environment. There are many challenges for fighting many problems confronting human, animals, plants and even microorganisms. At the interface between agriculture and nutrition, the aflatoxin contamination of food and feed touches on agriculture, health and economy. For more than three decades aflatoxin problems have been researched in Africa. The diversity of aflatoxin structures induces various toxic effects in human, animal, poultry, fish and plants. The main fungi that produce aflatoxins are Aspergillus parasiticus and Aspergillus flavus, which are numerous in warm and humid regions of the world. Aflatoxins are the most carcinogenic naturally occurring compounds which make worth complications on health, including hepatocellular carcinoma, acute intoxication, immune system disorder and retardation in children. Therefore. aflatoxin growth contamination is a global threat to human and animal health. Finding solution for aflatoxin inhibition is one of the key safety indexes for health and agriculture. The aim of this study was to find an essential enzyme in aflatoxin biosynthesis pathway in Aspergillus species and using some bioinformatics tools to inhibit this enzyme by using natural components. The in silico docking technique is one of the most applicable tools used in enzyme inhibition. In this investigation, about 700 natural compounds were examined, analogized and docked to examine their ability for inhibiting the most effective three domains (Acyl Carrier protein (ACP), product template (PT) and thioesterase (TE)) in polyketide synthesis enzyme which is representing the backbone of aflatoxin pathway biosynthesis. About forty natural components showed the best results with the three domains which attached to the active sites for the three domains, and gave the best results including the lowest binding energy and the best chemical interactions. From the docking results, the top ten natural components from each domain were analyzed and examined for their toxicity. Finally, the three natural compounds gave the best docking results; bromodeoxytopsentin which gave binding energy reached to -9 and two covalent hydrogen bond interactions with ACP domain, kraussianone 6 which gave binding energy reached to -11.2 and two covalent hydrogen bond interactions with PT domain and pinocembrin which gave binding energy reached to -7.3 and one covalent hydrogen bond interactions with TE domain.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATUR	3
2.1 Discovery of aflatoxin	3
2.2. The toxic effect of aflatoxins	3
2.2.1 Spreading of aflatoxin in the world	3
2.2.2 Aflatoxin toxicity	6
2.2.2.1 Toxicity of each type of aflatoxin	7
2.2.2.1.1 Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2)	7
2.2.2.1 .2 Aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2)	10
2.2.2.1.3 Aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2)	11
2.2.3 Aflatoxin effect in human, animals and plant production.	14
2.3 Biological production of aflatoxin	15
2.3.1 Aflatoxin production in fungi	15
2.3.2 Genetics of Aspergillus flavus	18
2.3.3 Aflatoxin metabolic pathway	18
2.3.4 Enzymes and genes involved in aflatoxin synthesis	27
2.4 The role of PKS (polyketide synthase) enzyme in	
aflatoxin production	28

2.4.1 Structure of the most functional PKS enzyme	29
2.4.1.1 Product template (PT)	30
2.4.1.2 Thioesterase (TE) domain	30
2.4.1.3 Acyl Carrier (ACP) Domain	30
2.5 Aflatoxin inhibition strategies	31
2.5.1 Inhibition using natural products	31
2.6 Bioinformatics tools	34
2.6.1 The role of bioinformatics tools in <i>in siilco</i> enzyme inhibition	35
2.6.2 Using docking methods in <i>in silico</i> enzyme inhibition for aflatoxin pathway	36
III. MATERIALS AND METHODS	39
3.1 Materials	39
3.1.1. Genetically background	39
3.1.2. Software and databases	40
3.1.2.1. Software	40
3.1.2.2. Databases	40
3.1.3. Selection of the target enzyme	41
3.1.4. Selection of target domains	41
3.1.5. Selection of natural ligands compounds	44
3.2 Methods	49
3.2.1 Alignment of polyketide synthase A (PKSA)	
enzyme and enzyme analysis	49
3.2.2 Ligand preparation	51

3.2.3 Detection of active site	52
3.2.4 Toxicity analysis	52
3.2.5 Docking of analogues	54
3.2.6 Discovery studio analysis	57
3.2.7 LigPlot+ analysis	58
IV. RESULTS AND DISCUSSION	59
4.1 Alignment for PKs enzyme against plants	59
4.2. Docking score	62
4.3. Drug-Likeness and analogs properties	66
4.4. Ligand-domain interaction	70
4.5. 2D chemical interactions	74
4.6. Hydrophilic interactions	81
4.7. H-bond interactions	85
4.8 Ionizability interactions	89
4.9 SAS interactions	93
4.10. 2D interactive maps	97
V. SUMMARY AND RECOMMENDATION	110
VII. REFERENCES	114
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Title	Page
1	The taxonomy and the shape of conidia spore and Conidial heads of <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus</i>	18
2	The top docked components, their chemical structures and source of isolation	45
3	The docking score for the top ten compounds with 3HRQ (PT) domain and the number of conventional hydrogen bonds in each component	64
4	The docking score for the top ten compounds with 2KR5 domain and the number of conventional hydrogen bonds in each one	64
5	The docking score for the top ten compounds with 3ILS domain and the number of conventional hydrogen bonds in each one	65
6	The results of the top ten of docked ligands with 3HRQ domain using SWISS-ADME, showing the atomic weight, number of donor and acceptor of H-bond, molar refractivity, lipophilicity, water Solubility, pharmacokinetics, drug likeness, medicinal chemistry and colored zone of each	
	compound	67
7	The results of the top ten of docked ligands with 2KR5 domain using SWISS-ADME, showing the	68

atomic weight, number of donor and acceptor of H-bond, molar refractivity, lipophilicity, water Solubility, pharmacokinetics, drug likeness, medicinal chemistry and colored zone of each compound.....

8

The results of the top ten of docked ligands with 3ILS domain using SWISS-ADME, showing the atomic weight, number of donor and acceptor of H-bond, molar refractivity, lipophilicity, water Solubility, pharmacokinetics, drug likeness, medicinal chemistry and colored zone of each compound.....

69

LIST OF FIGURES

Fig No.	Title	Page
1	The structures of the six types of aflatoxins	13
2	Gene cluster of aflatoxin, the expression productions, functions, genes encoding for the enzymes and the transcription factors in <i>A. nidulans</i> , <i>A. parasiticus</i> , and <i>A. flavus</i> including in aflatoxin	
	biosynthesis	22
3	The first stage of aflatoxin biosynthesis from acetyl	•••
	CoA to hydroxyversicolorone	23
	The second step of arrangement of aflatoxin	
4	biosynthesis from hydroxyversicolorone to versicolorin B (VB)	24
5	The third step of arrangement of aflatoxin	
5	biosynthesis and the final products	25
6	The metabolite of aflatoxins within the liver	
	through four metabolic pathways	26
7	The initiation of aflatoxin biosynthesis by PKS`s six	
	domains. (A) The six domains which formed the	
	aflatoxin PKS enzyme. (B) Biosynthetic	
	pathway prepare of aflatoxin	29
8	The selected three domains which examined for	
	targeting with ligands for inhibition of PKSA	
	enzyme. A: is product templet domain (PT), B: is	
	thioesterase (TE) or (3ILS) domain and C: is acyl-	10
	carrier protein (ACP) or (2KR5) domain	43
9	UniprotKB database that used for the AFLC/PKS	50

enzyme data with the ID: Q12053.....

10	Polyketide synthesis enzyme (Norsolorinic acid synthase or PKSA) 2,109 amino acid sequence	
	obtained from NCBI database	5
11	toxicity of each molecule	5
12	Cygwin for command line orders.	4
13	Adding hydrogen to the target enzyme using AutoDock	4
14	Drawing the push back of the grid box by using AutoDock Vina	4
15	Running of AutoDock Vina	4
16	The interaction between PT domain and substrate using Discovery studio	4
17	LigPlot+ program as abstracted from Katy <i>et al.</i> , 2020.	4
18	The alignment results with PKs enzyme against Aspergillus species	(
19	The alignment results with PKs enzyme against all organisms	(
20	The crystal structure interaction complex between PKS (PT or 3HRQ domain) with the substrate and	
	the top ten of docked inhibitors	,
21	The crystal structure interaction complex between 73PKS (2KR5 domain) with the top ten	,

VIII

22	The crystal structure interaction complex between PKS (3ILS domain) with the top ten	73
23	The binding poses and chemical interactions between PKS (PT or 3HRQ domain) with the substrate	78
24	The binding poses and chemical interactions between PKS (2kr5 domain) with the top ten	79
25	The binding poses and chemical interactions between PKS (3ILS domain) with the top ten inhibitors	80
26	The hydrophobic Interaction between PKS (3HRQ domain) and the substrate	82
27	The hydrophobic Interaction between PKS (2KR5 domain) with the top ten inhibitors	83
28	The hydrophobic interaction between PKS (3ILS domain) with the substrate	84
29	The hydrogen bond interaction showing the H- bond/electrostatic interactions between PKS (3HRQ domain) with the substrate	86
30	The hydrogen bond interaction showing the H- bond/electrostatic interactions between PKS (2KR5 domain) with the top ten	87
31	The hydrogen bond interaction showing the H- bond/electrostatic interactions between PKS (3ILS	07
	domain) with the substrate	88

32	The Ionizability after docking of (3HRQ domain) and the top ten inhibitors	90
33	The Ionizability after docking of (2KR5 domain) and the top ten inhibitors	91
34	The Ionizability after docking of (3ILS domain) and the top ten inhibitors	92
35	The SAS interaction after docking of (PT domain) with the top ten inhibitors	94
36	The SAS interaction after docking of (2KR5 domain) with the top ten inhibitors	95
37	The SAS interaction after docking of (3ILS domain) with the top ten inhibitors	96
38	The LigPlot of interactions between active site of 3HRQ domain of PksA with substrate	102
39	The LigPlot of interactions between active site of 2kr5 domain of PksA with substrate	107
40	The LigPlot of interactions between active site of 3ILS domain of PksA with the ten different ligands	109
	inguine.	107