

Damietta University Faculty of Science Botany Department

Microbial Contamination of Raw Milk and its Products of Dakahlia Governorate, Egypt

A Thesis Submitted By

Marwa Omar Younis Saleh

B. Sc. Botany (2004) M. Sc. Physiology (2014) Botany Department, Faculty of Science, Mansoura University

A thesis Submitted for Doctor of Philosophy Degree in Science/ Botany and Microbiology /Microbiology

Supervisors

Prof. Dr.

Zakaria A.M. Baka

Professor of Microbiology Department of Botany and Microbiology Faculty of Science, Damietta University

Prof. Dr.

Mohamed A. M. El-Metwaly

Professor of Mycology Plant Pathology Research Institute Agricultural Research Center, Giza, Egypt

Prof. Dr.

Adel H.A. Mustafa

Professor of Bacteriology Animal Health Research Institute Mansoura branch

2020

Contents

TITLE	Page
CONTENTS	Ι
LIST OF TABLES	VI
LIST OF FIGURES	IX
LIST OF PHOTOS	XI
ABBREVIATIONS	XII
INTRODUCTION	1
Aim of Study	6
Review of literature	7
Raw milk and its products	7
Contamination of milk and dairy products	8
Bacterial contamination	10
Characterization of E. coli strains	10
Prevalence of <i>E. coli</i> in milk and some dairy products	11
Market Raw milk	11
cheese (Kareish, Ras and Talaga)	13
Yoghurt	15
Ice cream	16
Public health and economic importance of <i>E. coli</i>	17
Characterization of S. aureus strains	20
Prevalence of S. aureus from milk and some dairy products	21
Market Raw milk	21
cheese (Kareish, Ras and Talaga)	23
Yoghurt	25

Ice cream	28
Public health and economic importance of S. aureus	30
Prevalence of yeast and mold from milk and some dairy products	32
Market Raw milk	32
cheese (Kareish, Ras and Talaga)	34
Yoghurt	36
Ice cream	39
Public health hazard and economic importance Yeast and Mold	40
Polymerase Chain Reaction for genes detection of (E. coli, S. aureus and fungi)	42
Antifungal activity of (salicylic acid- Citric acid- Ascorbic acid)	47
Antifungal and antibacterial effect of cyanobacteria	48
Packaging	50
MATERIALS AND METHODS	
Collection of samples	51
Media used for <i>E. coil</i> isolation, identification and preservation:	51
Eosin Methylene Blue Levine agar (EMB)	51
Trypton soya agar (TSA)	52
Semisolid nutrient agar medium	53
Media used for biochemical identification to the isolated microorganisms (<i>E. coil</i>)	54
Glucose phosphate peptone water	54
Simmon's citrate agar	55
Triple suger iron	56
Christensen's urea agar base medium	57
Lysine iron agar medium	58
Materials used for Analytical profile index 20 E	59

Media used for bacteriological examination of Salmonella	60
Non selective enrichment broth (pre-enrichment)	60
Selective enrichment broth	61
Selective plating media	62
Media used for bacteriological examination of <i>Staphylococcus aureus</i>	63
Selective plating media	63
Media used for biochemical identification of <i>S. aureus</i> .	64
Coagulase test (tube method)	64
Media for isolation of fungi Potato dextrose agar media (PDA)	64
Material used for polymerase chain reaction (PCR)	64
Material used for extraction of genomic DNA from isolates	64
PCR master Mix	67
Programmable thermal controller (PCR machine)	67
Material used for agarose gel electrophoresis and visualization of the PCR products	67
Methods	69
Preparation of samples	69
Microbiological examination of total <i>E. coli</i> Preparation of serial dilution	70
Direct method by spread surface technique	70
Identification of <i>E. coli</i>	70
Microscopically examination 'Gram staining'	70
Motility test	70
Biochemical identification of <i>E. coli</i>	71
Analytical profile index 20 E (API 20 E, biochemical rapid test, Bio- Mérieux, France	76

Microbiological examination of Total S. aureus	80	
Identification of S. aureus	80	
Gram's stain	80	
Biochemical identification of S. aureus	80	
Isolation of fungi	82	
Identification of fungi	82	
Determination of aflatoxins	83	
Method of polymerase chain reaction (PCR):	84	
PCR amplification	86	
Identification of the PCR products by agarose gel electrophoresis	90	
Methods of sequencing	92	
Cyanobacteria extracts	94	
Traditional milk products manufacturing	98	
Treatment with anti-fungal in vivo and vitro:	100	
Manufacture of Cyanobacteria extracts added soft cheese	101	
Manufacture soft cheese Wrapped by banana leaf	101	
Statistical analysis	101	
EXPERIMENTAL RESULTS		
Escherichia coli count in raw milk and some dairy products	102	
Staphylococcus aureus count in raw milk and some dairy products	102	
Biochemical identification of the <i>E.coli</i> isolates by using API 20E	103	
Isolated fungi from local fresh and storage milk products	108	
AFB1 in fresh and storage milk and dairy products	111	
PCR for detection 23srRNA and virulence genes of E. coli	116	
PCR for detection of <i>Eco</i> gene of <i>E. coli</i> :	116	
PCR for detection of Stx1and Stx2 genes of E. coli	116	

PCR for detection of <i>fim</i> C gene of <i>E. coli</i>	116
PCR for detection of (eae A)gene of E. coli	116
PCR for detection 23srRNA and virulence genes of <i>S.aureus</i>	119
PCR for detection of Sau gene of S. aureus	119
PCR for detection of <i>icaA</i> genes of <i>S. aureus</i>	119
PCR for detection of Staphylococcal enterotoxins genes of S. aureus	120
PCR for detection of <i>bap</i> gene of <i>S. aureus</i>	120
PCR for detection of <i>higBA</i> gene of <i>S. aureus</i>	120
PCR for detection of Pepi gene of Aspergillus niger	123
PCR for detection of cytochrome oxidase (<i>crtR</i>) gene	123
PCR for detection of LH gene of Candida albicans	123
Sequencing of PCR products of S.aureus and E.coli	125
Effect of some antioxidants on linear mycelial growth of isolated fungi	132
Effect of some antioxidants on fungi isolated from Kariesh cheese	132
Effect of some antioxidants on fungi isolated from Romy cheese	132
Effect of some antioxidants on fungi isolated from Talaga cheese	136
Effect of some antioxidants on fungi isolated from yogurt	136
Effect of some antioxidants on fungi isolated from ice cream	136
Effect of some antioxidants on fungi isolated from raw milk	137
Effect of some cyanobacteria on bacteria isolated from soft cheese	142
Effect of some cyanobacteria on fungi isolated from soft cheese	142
DISCUSSION	152
Conclusion	178
Summary	179
REFERENCES	181

LIST OF TABLES

Tables No.	Tables titles	Page No.
1	primer sequence for genes of S. aureus used in this study	65
2	primer sequence for genes of E. coli used in this study.	66
3	primer sequence for genes of mycology used in this study	66
4	Biochemical tests for identification of E. coli	75
5	Reading the API 20 E	79
6	PCR protocol for amplification conditions of PCR products for the detection of S. aureus	86
7	PCR protocol for amplification conditions of PCR products for the detection of Enterotoxin of S. aureus	86
8	PCR protocol for amplification conditions of PCR products for the detection of bap gene	87
9	PCR protocol for amplification conditions of PCR products for the detection of higBAPa gene	87
10	PCR protocol for amplification conditions of PCR products for the detection of icaA gene	87
11	PCR protocol for amplification conditions of PCR products for the detection of E.coli	88
12	PCR protocol for amplification conditions of PCR products for the detection of E.coli	88
13	PCR protocol for amplification conditions of PCR products for the detection of E.coli shiga toxin	88
14	PCR protocol for amplification conditions of PCR products for the detection of fimC gene	89
15	PCR protocol for amplification conditions of PCR products for the detection of eae gene	89
16	PCR protocol for amplification conditions of PCR products for the detection of A.niger	89
17	PCR protocol for amplification conditions of PCR products for the detection of candida albicanis	90
18	PCR protocol for amplification conditions of PCR products for the detection of Rhodotroulla spp	90

19Product Specifications: Spirulina platensis, powder Country of Origin: Egypt (Biochemical and Microbiological analysis).20Product Specifications: Arthrospira fusiformis, powder Country of Origin: Egypt (Biochemical and Microbiological analysis).21Nutritional Information of Spirulina platensi22Nutritional Information of Arthrospira fusiformis23Total count of E. coli in raw milk and some dairy products grown on EMB agar media24Frequency distribution of raw milk and some dairy products based on their E. coli25Staphylococcus aureus count in milk and some dairy products based on their S. aureus26Frequency distribution of raw milk and some dairy products based on their S. aureus27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage30AFB1 in fresh milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants34Isolated fungi from fresh cheese and their percentage after treatment by some antioxidants	
Origin: Egypt (Biochemical and Microbiological analysis).21Nutritional Information of Spirulina platensi22Nutritional Information of Arthrospira fusiformis23Total count of E. coli in raw milk and some dairy products grown on EMB agar media24Frequency distribution of raw milk and some dairy products based on their E. coli25Staphylococcus aureus count in milk and some dairy products based on their S. aureus26Frequency distribution of raw milk and some dairy products based on their S. aureus27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	95
22Nutritional Information of Arthrospira fusiformis23Total count of E. coli in raw milk and some dairy products grown on EMB agar media24Frequency distribution of raw milk and some dairy products based on their E. coli25Staphylococcus aureus count in milk and some dairy products grown on mannitol salt agar.26Frequency distribution of raw milk and some dairy products based on their S. aureus27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	96
23Total count of <i>E. coli</i> in raw milk and some dairy products grown on EMB agar media24Frequency distribution of raw milk and some dairy products based on their <i>E. coli</i> 25Staphylococcus aureus count in milk and some dairy products grown on mannitol salt agar.26Frequency distribution of raw milk and some dairy products based on their <i>S. aureus</i> 27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	97
on EMB agar media24Frequency distribution of raw milk and some dairy products based on their <i>E. coli</i> 25Staphylococcus aureus count in milk and some dairy products grown on mannitol salt agar.26Frequency distribution of raw milk and some dairy products based on their <i>S. aureus</i> 27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	97
on their <i>E. coli</i> 25Staphylococcus aureus count in milk and some dairy products grown on mannitol salt agar.26Frequency distribution of raw milk and some dairy products based on their <i>S. aureus</i> 27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	104
grown on mannitol salt agar.26Frequency distribution of raw milk and some dairy products based on their <i>S. aureus</i> 27percentage Isolated fungi from local fresh milk products and their percentage28Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants34Isolated fungi from fresh cheese and their percentage after treatment by some antioxidants	104
on their S. aureus27percentage Isolated fungi from local fresh milk products and their28Isolated fungi from local storage milk products and thei29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	106
111128Isolated fungi from local storage milk products and their percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants35Isolated fungi from fresh cheese and their percentage after	106
percentage29AFB1 in fresh milk and dairy products30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants35Isolated fungi from fresh cheese and their percentage after	112
30AFB1 in storage milk and dairy products31Sequence producing alignments with the most matching sequences32Effect of some antioxidants on linear mycelial growth of isolated fungi33Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants35Isolated fungi from fresh cheese and their percentage after	113
 31 Sequence producing alignments with the most matching sequences 32 Effect of some antioxidants on linear mycelial growth of isolated fungi 33 Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants 34 Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants 35 Isolated fungi from fresh cheese and their percentage after 	114
 32 Effect of some antioxidants on linear mycelial growth of isolated fungi 33 Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants 34 Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants 35 Isolated fungi from fresh cheese and their percentage after 	115
fungi33Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants35Isolated fungi from fresh cheese and their percentage after	129
treatment by some antioxidants34Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants35Isolated fungi from fresh cheese and their percentage after	133
Treatment by some antioxidants35Isolated fungi from fresh cheese and their percentage after	134
	135
reament by some annoxidants.	138
36 Isolated fungi from yogurt and their percentage after treatment by some antioxidants	139
37 Isolated fungi from ice cream and their percentage after treatment by some antioxidants	140

38	Isolated fungi from raw milk and their percentage after treatment by some antioxidants	141
39	Effect of some treatments against <i>E. coli</i> count as an experimental study on soft cheeses	144
40	Effect of some treatments against <i>S. aureus</i> count as an experimental study on soft cheeses.	145
41	Effect of some treatments against fungi count as an experimental study on soft cheeses	146

LIST OF FIGURES

Figure No.	Figure titles	Page No
1	The ice-cream production process	99
2	Incidence of <i>E. coli</i> in raw milk and milk products	105
3	Total count of <i>E. coli</i> in raw milk and some dairy products grown on EMB agar media	105
4	Incidence of S. aureus in milk and milk products	107
5	Total count of <i>S. aureus in milk and some dairy products on mannitol salt agar.</i>	107
6	Biochemical identification of the <i>E.coli</i> isolates by using API 20E	108
7	Isolated fungi from local fresh milk products and their percentage	112
8	Isolated fungi from local storage milk products and their percentage	113
9	AFB1 in fresh milk and dairy products	114
10	AFB1 in storage milk and dairy products	115
11	PCR amplification of purified bacterial DNA by using <i>E. coli</i> specific primers	117
12	Amplification of Shiga Toxin 1 and 2 (<i>stx</i> 1 and <i>stx</i> 2) genes of <i>E</i> . <i>coli</i> strains	118
13	PCR for detection of <i>fim</i> C gene of <i>E. coli</i>	118
14	PCR for detection of (eae A)gene of E. coli	119
15	PCR amplification of purified bacterial DNA by using <i>S. aureus</i> specific primers	121
16	Amplification of biofilms gene (<i>icaA</i>) of <i>S. aureus</i> strains	122
17	Amplification of enterotoxin (sea) gene of S. aureus strains	122
18	Amplification of Biofilms (Bap) gene of S. aureus strains	123
19	Amplification of HigBA toxin gene of S. aureus strains	123
20	Agarose gel of PCR with the PEPI primer and two <i>Aspergillus niger</i> isolates	124

21	primer and isolate of Agarose gel of PCR with the crt	124
	Rhodotorula glutinis	
22	PCR for Candida albicans (LH gene)	125
23	Finch TV data analysis, showing sequence peaks covering NCBI	128
24	Sequence alignment from NCBI, showing matching with ATCC <i>S.aureus</i> .	129
25	Sequence producing alignments with the most matching sequences.	129
26	Phylogenetic tree with different nodes and clades representing the unknown sequence in clade of S.aureus.	130
27	Alignment process of sequences showing different colors of nucleotides	131
28	Phylogenetic tree with different nodes and clades representing the unknown sequence in clade of <i>E.coli</i>	131
29	Effect of some antioxidants on linear mycelial growth of isolated fungi.	133
30	Isolated fungi from kariesh cheese and their percentage after treatment by some antioxidants	134
31	Isolated fungi from Romy cheese and their percentage after treatment by some antioxidants	135
32	Isolated fungi from fresh cheese and their percentage after treatment by some antioxidants	138
33	Isolated fungi from yogurt and their percentage after treatment by some antioxidants	139
34	Isolated fungi from ice cream and their percentage after treatment by some antioxidants.	140
35	Isolated fungi from raw milk and their percentage after treatment by some antioxidant	141
36	Effect of some treatments against <i>E. coli</i> count as an experimental study on soft cheeses.	144
37	Effect of some treatments against <i>S. aureus</i> count as an experimental study on soft cheeses.	145
38	Effect of some treatments against fungi count as an experimental study on soft cheeses	146

LIST OF PHOTOS

Photo No.	Photo titles	Page No
1&2	<i>S. aureus</i> colonis on mannitol salt agar medium. Colonies appear yellow color with changing the medium color from red to yellow	147
3&4	A Gram stained smear prepared from examined samples the organism can be seen as Gram positive, cocci arranged in grape like cluster.	147
5	Catalase test effervescence as gas bubbles, indicate the presence of catase in the culture under teste	147
6	<i>S. aureus</i> colonis on Baird-parker agar medium. Colonies appear black, shiny, convex and surrounded by aclear zone of about 2.5 mm	148
7	Motility teste media for the identification of <i>E.coli</i>	148
8	Simmon citrate agar slant for citrate utilization.	148
9	<i>E. coli</i> on EMB medium (green metallic sheen colonies)	148
10	Gram positive organism.	149
11	Indole test for identification of <i>E. coli</i> .	149
12	Slants of fungal growth	149
13-16	Fungal growth on PDA media	150
17&18	Manufacture soft cheese wrapped by banana leaf.	151
19	Manufacture of Cyanobacteria extracts added soft cheese	151

Summary

The present study was performed to estimate the actual antibacterial effect of some cyanobacteria extracts against bacterial growth of pathogenic bacteria with special reference to *S. aureus* and *E. coli* that were isolated from raw milk and dairy products sold in Dakahlia Governorate, Egypt.

This study included examination of 150 samples (25 of raw market milk, 25 kariesh cheese, 25 yoghurt, 25 Talaga cheese, 25 Ras cheese, 25 ice cream) samples were randomly collected from different shops and supermarkets in Dakahlia, Egypt.

The samples examined bacteriologically by using selective media (mannitol salt and eosin methylene blue). Recovered isolates were identified by using an array of biochemical and serological tests and by PCR detection.

The current result revealed that *E. coli* was observed in 88%, 56%, 80%, 68%, 52% and 68% kariesh cheese, Talaga cheese, yoghurt, market raw milk, ice cream and Ras cheese samples, respectively, with mean counts $8.2 \times 10^6 \pm 2.5 \times 10^6$, $1.8 \times 10^7 \pm 4.5 \times 10^6$, $1.4 \times 10^6 \pm 3.9 \times 10^5$, $8.1 \times 10^6 \pm 2.3 \times 10^6$, $1.5 \times 10^5 \pm 0.6 \times 10^5$ and $4.1 \times 10^6 \pm 1.2 \times 10^6$ colony-forming units (cfu)/g or ml.

S. aureus was observed in 80%, 88%, 13%, 13%, 7% and 76% kariesh cheese, Talaga cheese, yoghurt, market raw milk, ice cream and Ras cheese samples, respectively, with mean counts $1.1 \times 10^6 \pm 2.3 \times 10^5$, $1.0 \times 10^7 \pm 2.2 \times 10^6$, $5.2 \times 10^5 \pm 2.8 \times 10^5$, $6.7 \times 10^6 \pm 2.5 \times 10^6$, $0.3 \times 10^5 \pm 0.2 \times 10^5$ and $1.1 \times 10^6 \pm 2.3 \times 10^5$ colony-forming units (cfu)/g or ml.

In this study the isolated fungi, Aspergillus flavus, Aspergillus niger, Aspergillus ochraceus, Aspergillus oryzae, Mucor sp., Penicillium

spp., *Rhizopus* sp., *Trichoderma* spp. and yeast from milk and dairy products at different percentages were observed be increased by storage of samples.

The present study was performed to estimate the antifungal effect of some antioxidants against fungi isolated from milk and dairy products. Founded that all concentrations of additives appeared a significant antagonism towered all isolated fungi. Ascorbic acid had the greatest effect on tested fungi followed by salicylic acid then citric acid.

The results showed that the aqueous extracts of the cyanobacteria such as *Sprirulina plantensis* and *Arthrospira fusiformis* were evaluated for their antibacterial activity by inhibiting the growth of *E. coli* and *S. aureus*. The soft cheese treated with cyanobacteria extract showed a potentially reduction of bacterial contamination. The results proved that the using these species of cyanobacteria could be used as a good source for the production of promising antibacterial agents.

Using natural material to wrap the manufactured cheese such as banana leaves instead of plastic sheets led to reduction of *E. coli*, *S. aureus* and fungi count to undetectable levels.