Benha University Faculty of Science Chemistry Department

Extraction and evaluation of some natural chemical compounds for controlling some piercing and sucking pests.

Thesis submitted by Shiry Sobhey Takla

B.Sc. (Bio-Chemistry), (2007) Faculty of Science - Helwan University M.Sc. (Inorganic and Analytical Chemistry), Faculty of Science - Helwan University (2014)

In partial Fulfillment for the Requirement for the Degree of (Ph.D) in Chemistry

Supervisors

Prof. Dr. Farida M.S.E El-Dars

Professor of Analytical Environmental Chemistry, Faculty of Science, Helwan University

Late Prof. Dr. Evette Abd El -Said Eshak

Professor of Organic Chemistry, Chemistry Department Faculty of Science, Benha University

Prof. Dr. Marguerite Adly Rizk

Professor Dr. of Acarology, Plant Protection Research Institute; Agricultural Research Center, Giza Egypt

Late Prof. Dr.

Talat Yonis Mohamed

Professor of Analytical Chemistry, Chemistry Department- Faculty of Science, Benha University.

2020

Table of Contents

Subject	Page
Acknowledgement	0
List of Abbreviations	
List of Tables	
List of Figures	
Chapter I	1
Introduction	
I.1.Chemical Pesticides	1
I.2.Natural product	2
Chapter II	5
Review of Literature	
II.1.Chemical Pesticides and their Residues in food	5
II.2. Essential oils	6
II.2.1.Garlic essential oil	8
II.2.2. Jojoba essential oil	9
II.2.3. Neem essential oil	10
II.3. Analytical Methods for the Determination and Identification of	12
Active compounds in some Essential Oil and its residues	
II.3.1.Chemical Composition of Essential Oils	13
II.3. 2. Analytical Methods for the Determination of Essential Oils	14
II.3. 2.1.Gas chromatography (GC)	15
II.3. 2.2.High-performance liquid chromatography (HPLC)	16
II.3. 2.3.Ultraviolet-Visible (UV-Vis)spectroscopy	17
II.3.2.4. Liquid chromatography coupled to mass spectrometry	18
(LC/MS).	10
II.4. Phytophagous pests infesting economical crops in Egypt	18
II.4.1. Spider mite (<i>Tetranycus urticae</i> Koch)	18
II.4.2. Sweet potato whitefly (Bemisia tabaci Gannadius)	21
II.4.3. Onion thrips (Thrips tabaci) Lindeman	23
II.4.4. Leafhopper (Jassid empoasca SP.)	23
II.5. Aim of the study	
Chapter III	25
Material and Methods	
III.1. Material	26
III.1.1.Reagents and Chemicals	26
III.1.2. Pesticide used	26
III.1.3. Essential oils used	26
III.1.2.1.Physicochemical properties of Ortus super Fenpyroximate 5% EC	26
III.1.3.1.Physicochemical properties of Essential oils used:	28

III.1.4.Conformation of active and function groups for Ortus	31
formulation 5% EC fenpyroximate and essential oils by using FT-	
IR.	
III.1.5.The plant used in experimental work: Eggplant (Solanum	32
melongena L.)	
III.2.Methods	34
III.2.1. Experimental Field design	34
III.2.2. Determination of Ortus formulation 5% EC fenpyroximate	34
by using HPLC.	
III.2.2.1. HPLC Analysis:	35
III.2.2.2. Method validation for Fenpyroximate determination on	36
Eggplant: Linearity, LOD, and LOQ:	
III.2.2.3. Rate of recovery	37
III.2.2.4. Determination of Fenpyroximate active ingredient content	37
in Ortus formulation 5% EC residues in treated eggplant using	
HPLC.	
III.2.3. Identification of active components in essential oils by	39
GC/MS:	
III.2.3.1. GC/MS analysis:	39
III.2.3.2. Method validation for the determination of essential oils on	40
eggplant	
III.2.3.3. Rate of recovery	41
III.2.3.4. Evaluate the content of sulfur components in garlic oil	41
residues in crops treated using GC/MS	
III.2.4. Determination of the effectivity of the pesticide and essential	42
oils used on pest control during Eggplant growth cycle	
Chapter V	43
Results and Discussion	
Section 1: Fenpyroximate (Ortus)	43
V.1.1. Analysis and identification of Fenpyroximate (Ortus) active	43
and functional groups using FT-IR	
V.1.2. Method validation for Fenpyroximate residues determination	46
in eggplant: Linearity, LOD, and LOQ	
V.1.3. Spike and Recovery Accuracy test of Fenpyroximate	47
V.1.4.Determination of Fenpyroximate (Ortus) residues in treated	49
eggplant using the proposed HPLC method	
V.1.5.Degradation Kinetics of Fenpyroximate on eggplant	58
Section 2: Garlic Oil	61
V.2.1. Analysis and identification of Garlic oil active and functional	61
groups using FT-IR	

V.2.2. Method validation for the determination of Garlic essential	63
oil determination on eggplant: Linearity, LOD and LOQ	<i></i>
V.2.3. Spike and Recovery Accuracy of Garlic essential oil by HPLC	65
V.2.4. Results of Garlic oil degradation by GC/MS Mass	67
V.2.4.1. Garlic oil residue on eggplant after direct spray	67
V.2.4.2. Garlic oil residue on eggplant after one day	71
V.2.4.3. Garlic oil residue on eggplant after 12 day	75
V.2.4.4. Garlic oil residue on eggplant after 24 days	75
Section 3: Jojoba oil	78
V.3.1. Analysis and identification of Jojoba oil active and functional groups using FT-IR:	78
V.3.2.Method validation for the determination of Jojoba essential oil determination in eggplant: Linearity, LOD and LOQ	81
V.3.3.Spike and Recovery Accuracy of Jojoba essential oil	83
V.3.4. Results of Jojoba oil degradation by GC/MS Mass	84
V.3.4.1.Jojoba oil residue on eggplant after direct spray	88
V.3.4.2.Jojoba oil residue on eggplant after one day	88
V.3.4.3.Jojoba oil residue on eggplant after12 day	92
V.3.4.4.Jojoba oil residue on eggplant after 24 day	92
Section 4: Neem Oil	95
V.4.1. Analysis and identification of Neem oil active and functional	95
groups using FT-IR	
V.4.2. Method validation for the determination of Neem essential oil	98
determination on eggplant: Linearity, LOD and LOQ	
V.4.3. Spike and Recovery Accuracy of Neem essential oil	99
V.4.4. Results of Neem oil degradation by GC/MS Mass	101
V.4.4.1. Neem oil residue on eggplant after direct spray	101
V.4.4.2. Neem oil residue on eggplant after one day	104
V.4.4.3. Neem oil residue on eggplant after12day	108
V.4.4.4. Neem oil residue on eggplant after 24 day	108
Section 5: Biological Activity Test	110
V.5. Biological activity of different type of essential oil and <i>Ortus</i>	110
V.5.1.Biological activity of <i>Ortus</i> 5%Sc (Fenpyroximate)	110
V.5.2.Biological activity of Garlic essential oil	113
V.5.3.Biological activity of Jojoba essential oil	118
V.5.4. Biological activity of Neem essential oil	122
V.6.Conclusion	126
Chapter VI. Conclusion and Recommendations	128
Chapter VII. English Summary	131
Chapter VIII. References	139
الملخص العربي	1

List of Tables

Table	Page
1. Physicochemical properties of pure Fenpyroximate	27
2. Physiochemical properties of Garlic oil, Jojoba Oil, and Neem oil	30
3. HPLC Instrumental Setup and conditions for the determination of standard Fenpyroximate (<i>Ortus</i>) and its pesticide residues on eggplant.	35
4. Standard conditions for GC/MS for the determination of essential oil and their residues on eggplant	39
5. FTIR analysis of Fenpyroximate	45
6. Linearity parameters for the analytical determination of Fenpyroximate using HPLC	47
7. Accuracy (Spike and Recovery %) for HPLC method for Fenpyroximate determination on Eggplant blank	48
8. Determination of Fenpyroximate residues (ppm) on eggplant	49
9. Fenpyroximate residue (mg/kg) on eggplant over the test period	58
10. Identified functional groups in Garlic oil analyzed by FT-IR	63
11. Linearity parameters for the analytical determination of Garlic oil	65
12. Recovery Accuracy of Garlic essential oil by HPLC using untreated eggplant	66
13. GC-MS analysis of Garlic essential oil	68
14.GC-MS analysis of Garlic essential oil on eggplant after one day.	72
15. Identified Functional groups in Jojoba oil analyzed by FT-IR	80
16. Linearity parameters for the analytical determination of Jojoba oil	82
17. Recovery Accuracy of Jojoba essential oil by HPLC using untreated eggplant	83
18.GC-MS analysis of Jojoba essential oil after direct spray	85
19. GC-MS analysis of Jojoba essential oil on eggplant after one day	89
20. GC-MS analysis of Jojoba essential oil on eggplant after one day:	97
21. Linearity parameters for the analytical determination of Neem oil	99

22. Recovery Accuracy of Neem essential oil by HPLC using untreated eggplant	100
23.GC-MS analysis of Neem oil.	102
24. GC-MS analysis of Neem essential oil on eggplant	105
after one day	
25.Effect of <i>Ortus</i> 5%Sc (Fenpyroximate) on pests infested eggplant crops in winter 2017	110
. 26. Effect of Ortus 5%sc (Fenpyroximate) on pests infested eggplant crops in summer 2018	111
27. Effect of Garlic essential oil on pests infested eggplant crops in winter 2017	113
28. Effect of Garlic essential oil on pests infested eggplant crops in summer 2018.	114
29. Effect of Jojoba essential oil on pests infested eggplant crops in winter 2017	118
30. Effect of Jojoba essential oil on pests infested eggplant crops in summer 2018	119
31. Effect of Neem essential oil on pests infested eggplant crops in winter 2017	122
32. Effect of Neem essential oil on pests infested eggplant crops in summer 2018	123

List of Figures

Figure	Page
Scheme1. Chemical Structure of Fenpyroximate (FAO /WHO, 2015)	27
Scheme2. Chemical structure of Garlic Oil	29
Scheme 3. Chemical structure of Jojoba Oil	29
Scheme 4. Chemical structure of Neem Oil	29
Figure1. HPLC chromatogram of standard Fenpyroximate.	36
Figure 2. FTIR Spectrum of Ortus	44
Figure 3. Calibration curve for Fenpyroximate (0.5–400 ng/ml)	46
Figure 4. Recovery of (10ppm) Fenpyroximate standar	48
Figure 5.Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=0	50
Figure6. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=1hour	51
Figure 7. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=one day	52
Figure 8. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=3 day.	53
Figure 9. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=5 day	54
Figure 10. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=7 day	55
Figure 11. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=14 day	56
Figure 12. Chromatogram of Fenpyroximate (ppm) residues on eggplant sample at time=21 day	57
Figure 13. The stability of Fenpyroximate solution (5%) with time	59
Figure 14. FT-IR spectrum of Garlic oil.	62
Figure 15. Calibration curve of Garlic essential oil by HPLC	64
Figure 16. Standard curve for Garlic essential oil by HPLC	<u>66</u>
Figure 17. GC/MS of Garlic oil (ppm) after direct spray	<u>69</u>
Figure 18. GC/MS of the Garlic oil after direct spray	70
Figure 19.Mass spectrum of Garlic residues (ppm) by GC/MS.	71
Figure 20. GC/MS of Garlic oil on eggplant after one day.	72
Figure 21. GC/MS of Garlic oil on eggplant after one day Figure 22 Mass spectrum of Carlie residues (ppm) by CC/MS after	72 74
Figure 22. Mass spectrum of Garlic residues (ppm) by GC/MS after	/4

one day	
Figure 23.Gas Chromatogram GC/MS of Garlic oil on eggplant	75
after 12 day	
Figure 24.Gas Chromatogram GC/MS of Garlic oil on eggplant	75
after 24 days	15
	79
Figure 25. FT-IR Spectrum of Jojoba oil.	
Figure 26.Calibration curve for Jojoba oil	82
Figure 27. Standard curve of Jojoba essential oil by HPLC	84
Figure 28.GC/MS of Jojoba oil (ppm) on eggplant after direct spray	86
Figure 29.GC/MS of Jojoba oil on eggplant after direct spray	87
Figure 30.Mass spectrum of Jojoba oil residues (ppm) by GC/MS	88
Figure 31.GC/MS of Jojoba oil on eggplant after one day	90
Figure 32.GC/MS of Jojoba oil on eggplant after one day.	90
Figure 33. Mass spectrum of Jojoba residues (ppm) by GC/MS after	91
one day	
Figure 34. GC/MS of Jojoba oil on eggplant after 12 day.	92
Figure 35. GC/MS of Jojoba oil on eggplant after 24 day	92
Figure 36. FT-IR Spectrum of Neem oil	96
Figure 37. Calibration curve of Azadrichtin	98
Figure 38. Standard curve of Neem essential oil by HPLC	101
Figure 39. GC/MS of Neem oil (ppm) on eggplant after direct spray	103
Figure 40.Gas Chromatogram GC/MS of Neem oil	103
Figure 41.Mass spectrum of Neem residues (ppm) by GC/MS	104
Figure 42. GC/MS of Neem oil on eggplant after one day.	106
Figure 43. Mass spectrum of Neem residues (ppm) by GC/MS on	107
eggplant after one day	
Figure 44. GC/MS of Neem oil on egg plant after 12 day	108
Figure 45. GC/MS of Neem oil on egg plant after 24 day	108
8	

Abstract

The purpose of this work is to evaluate the effectively natural pesticides; especially those derived from plants, are promising elements for pest control and are considered on alternative to synthetic pesticides as it reduces the negative impacts on the human health and the environment. Also, the use of chemical pesticides is a cost-effective method of controlling insect pests. Essential oils and their derivatives are considered alternative means for controlling many harmful insects.

Sucking pest such as (Spider mite, Whitefly, Thrips and Jassid) was selected as foliage pests for this study which attack eggplant (*Solanum melongena* L.) crops, because of the severe damage they inflate on this crop.

A method for determination of Fenpyroximate (*Ortus*5%) residues in eggplant (*Solanum melongena* L.) by HPLC is described. The analysis was done using HPLC equipped with a UV-Vis detector at 254 nm. The degradation rate of Fenpyroximate was studied and the results indicated that final residue in eggplant reached 20.1% after 21 days which was considered safe for human and animal consumption, despite its insecticide effectively on eggplant pests.

Essential oil is very important botanicals that can act as a fumigants, insecticides, repellents, and anti-feedants. As well, their rapid degradation in the environment and increased specificity do not harm beneficial insects.

In this study, the effect of essential oil (Garlic oil, Jojoba oil and Neem oil) as bio pesticide on the economical production eggplant. After application, the residues of essential oil within the plant during crop production cycle were determined using GC/MS. Samples (leaves &fruits) were collected on the 1st, after 12nd days, after 24th days of spraying Garlic oil, Jojoba oil and Neem oil. Results revealed that it is important to use

VII

selective acaricides which are highly effective in controlling the target pest and simultaneously, less harmful to human and environment.

Prior to use, the volatile and organic constituents of commercial applied essential oil and Fenpyroximate were identified using FT-IR analysis.

Keywords: essential oil, Fenpyroximate (*Ortus*), bio insecticides, residue, GC/MS, HPLC eggplant, acaracide.