Kafrelsheikh University Faculty of Agriculture Agric. Eng. Department

STUDY ON THE APPLICATION OF BIODIESEL TO OPERATE THE FARM MACHINERY

BY

Ahmed Salah Hassan Ahmed El-Okia

B.SC. (AGRICULTURAL ENGINEERING), FAC. OF AGRIC., KAFRELSHEIKH UNIVERSITY, 2012

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

> OF MASTER OF SCIENCE

IN AGRICULTURAL ENGINEERING

DEPARTMENT OF AGRICULTURAL ENGINEERING FACULTY OF AGRICULTURE KAFRELSHEIKH UNIVERSITY

(2020)

CONTENTS

1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Definition, properties and advantages of biodiesel	4
2.2. Biodiesel extraction sources	10
2.2.1. Animal sources	11
2.2.2. Vegetative sources	13
2.3. Performance of biodiesel as an alternative fuel in diesel	
engines	13
2.4. Evaluation of the exhaust gases for vegetable oil wastes as	
alternative fuel (biodiesel)	19
2.5. Evaluation of noise emission for vegetable oil wastes as	
alternative fuel (biodiesel fuel)	30
3. MATERIALS AND METHODS	32
3.1. MATERIALS	32
3.1.1. The raw materials of biodiesel production	32
3.1.2. Instrumentations	36
3.2. METHODS	41
3.2.1. Laboratory trail	41
3.2.1.1. Synthesis of biodiesel (methyl ester)	41
3.2.1.2. Biodiesel purification	46
3.2.2. Experimental tests	52
3.2.2.1. Engine power	53
3.2.2.2. Specific fuel consumption	53
3.2.2.3. Exhaust gases analysis test	53
3.2.2.4. Fuel types switching	54
3.2.2.5: Noise pollution test	54
4. RESULTS AND DISCUSSION	56
4.1. Properties of biodiesel and diesel	56

Contents

4.2. Effect of fuel mixing ratio, gear shifting, throttle lever position	
and operating condition on engine power (kW)	58
4.3. Effect of mixing ratio on specific fuel consumption	62
4.4 Exhaust gases analyzing test	62
4.4.1 Effect of fuel mixing ratio on CO concentration (ppm)	62
4.4.2 Effect of throttle fuel position on CO concentration (ppm)	63
4.4.3 Effect of fuel mixing ratio on CO ₂ (%)	64
4.4.4. Effect of throttle lever position on CO ₂ (%)	64
4.4.5. Effect of fuel mixing ratio on N+NOx (%)	65
4.4.6. Effect of throttle lever position on N+NOx (%)	66
4.5 Noise emission analysis	67
4.5.1. Effect of fuel mixing ratio on noise level (dB)	
4.5.2. Effect of fuel type and fuel throttle lever position on noise	
emission for bystanders	68
4.5.3. Effect of throttle lever position on noise level (dB)	71
5. SUMMARY AND CONCLUSION	73
6. REFERENCES	78
7. APPENDIX	87
ARABIC SUMMARY	١

LIST OF FIGURES

Figure No.	Title	Page
Figure 1	Major Biodiesel feedstock at 2013	11
Figure 2	Tested tractor	34
Figure 3	Locally manufactured trailer	34
Figure 4	Self-propelled reaper binder	35
Figure 5	Photograph of digital pH meter	38
Figure 6	Photograph of hand-held gas analyzer	39
Figure 7	Photograph of software of gas analyzer	40
Figure 8	Photograph of sound level meter	41
Figure 9	Sodium methoxide formation formula	43
Figure 10	Transesterification process equation	45
Figure 11	Photograph of waste cooking oil	45
Figure 12	Photograph of biodiesel product	46
Figure 13	Biodiesel purification stages	47
Figure 14	Biodiesel before and after purifying and drying	
C	process	48
Figure 15	Flowchart of Biodiesel purification process	49
Figure 16	Dimensions of the test area in the bystander noise	
	test	55
Figure 17	Effect of fuel mixing ratio, gear shifting, throttle lever position and operating conditions on engine power (kW)	
		61
Figure 18	Effect of fuel mixing ratio on specific fuel consumption	62
Figure 19	Effect of fuel mixing ratio and throttle lever position on CO concentration	64
E'	Effect of feel mining active and through herein	64
Figure 20	position on CO_2 percentage	65
Figure 21	Effect of fuel mixing ratio and throttle lever position on N+NOx percentage	66
Figure 22	Effect of fuel type and fuel throttle lever position	00

	on noise emission for bystanders along the tested	
	track	74
Figure 23	Effect of fuel mixing ratio and throttle fuel position	
	on noise level (dB) for the operator and the	
	bystanders	72

LIST OF TABLES

Table No.	Title	Page
Table 1	South Africa's major crops	13
Table 2	Technical specification of the tested tractor in this study	33
Table 3	Technical specifications of self-propelled reaper binder	35
Table 4	Standard tests for fuel properties	50
Table 5	Physical properties of biodiesel (100%), biodiesel (20%) and discal fuel	56
Table A-1	Effect of fuel type, mixing ratio, gear shifting, throttle lever position and operating condition with no attached load and with attached load on fuel	50
	engine power (kW)	87
Table A-2	Effect of fuel type, mixing ratio, throttle lever position and on noise (disebel)	88
Table A-3	Effect of fuel type, mixing ratio, throttle lever position on CO (ppm)	88
Table A-4	Effect of fuel type, mixing ratio, throttle lever position on CO_2 (%)	89
Table A-5	Effect of fuel type, mixing ratio, throttle lever position on $N \pm NOx$ (9/)	00
Table A-6	Effect of fuel type, mixing ratio, throttle lever	90
	position and on noise for bystanders (disebel)	91

STUDY ON THE APPLICATION OF BIODIESEL TO OPERATE THE FARM MACHINERY

ABSTRACT

The study aims to utilize waste cooking oil as a raw material to produce biodiesel and evaluate the biodiesel suitability to operate farm machinery. The variables of the study were three different mixing ratios for biodiesel, namely 5% biodiesel with 95% diesel, 20% biodiesel with 80% diesel, 0% biodiesel with 100% diesel (as a control treatment), two gearbox positions, i.e. the first and second gear during the trial phases, two fuel lever positions, i.e. half lever position and full lever position and two operation modes, i.e. without load operation and with pulled load. The measurements of this study were the output engine power, specific fuel consumption, the emission percentage of exhaust gases, measurement of noise for operator and bystanders. The obtained results revealed that B20 recorded less values compared with diesel fuel. Increasing biodiesel in fuel mixture led to less output engine power compared with diesel fuel. Increasing biodiesel in fuel mixture led to higher rate of specific fuel consumption than diesel fuel. B20 recorded the least values of carbon monoxide and carbon dioxide compared with diesel fuel. Whereas, B20 recorded highest values of No_x. Increasing biodiesel in fuel mixture caused less noise for both operator and bystanders compared with diesel fuel.