TECHNOLOGICAL STUDIES ON UTILIZATION OF FOOD WASTES IN SOME BAKERY PRODUCTS

BY

BASMA RASHAD SALEM AHMED

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Sciences (Food Science - Food Technology)

Department of Food Science Faculty of Agriculture Zagazig University 2020

ABSTRACT

This study was carried out to evaluate the chemical and physical properties of some by products including (tomato pomace powders (TPP), mango seeds kernel powder (MSKP) and pomegranate peels powder (PPP). Also studied the effect of substitution of wheat flour with 2.5, 5.0, 7.5 and 10.0 % of (TPP), (MSKP) and (PPP) on chemical, physical, sensory, baking properties and the acceptability of cake and biscuit. Results showed that, wheat flour recorded the higher moisture and total carbohydrate contents. Tomato pomace powder recorded the higher crude protein and crude fiber contents.While mango seeds kernel powder had the highest lipids content and pomegranate peels powder had the highest ash and crude fiber content. For total phenolic and flavonoid content, TPP contain the highest total phenolic and flavonoid content followed by PPP and finally MSKP. Also, the partial replacement of wheat flour with TPP, MSKP and PPP increased chemical composition % (moisture, crude protein, lipids, ash and crude fiber), minerals content (i.e. K, Ca, Mg, Na, Mn, Fe and Zn), dietary fiber content (i.e. total, soluble and insoluble dietary fiber) of cake and biscuit samples, while total carbohydrates were decreased in parallel with increasing the level of substitution compared with control cake samples. Cake and biscuit sample treatments containing TPP, MSKP and PPP have also recorded the same trend of chemical composition, minerals, dietary fiber content. The partial replacement of wheat flour with TPP, MSKP and PPP increased total phenolic and flavonoid content of cake and biscuit samples compared with control samples in parallel with

increasing the level of substitution .Cake and biscuit treatments containing TPP had the highest total phenolic and flavonoid content followed by PPP and finally MSKP. Also, the partial replacement of wheat flour with TPP, MSKP and PPP increased cake and biscuit weight while volume and specific volume were decreased in parallel with increasing the level of substitution. The addition of TPP, MSKP and PPP can cause decrease in lightness of the cakes. In case of redness (a) it was found that TPP substitution level 10 % was the most-red. Yellowness (b), it was found that MSKP substitution level 2.5 % was the most yellow. Concerning substitution with TPP and MSKP, all the sensory evaluation characters, cells, grain, texture, crumb color, flavor and overall acceptability, have no significant difference between the control sample and cake and biscuit samples which substituted with 2.5, 5 and 7.5 % of MSKP and TPP.

Keywords: Cake - Biscuit - By products - Tomato pomace powder - Mango seeds kernel - Pomegranate peels powder - Dietary fiber - Phenolic and flavonoid content.

CONTENTS

1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	7
2.1.	Food processing wastes	7
2.2.	Bioactive compounds of plants by-products	9
2.2.1.	Dietary fiber	9
2.2.2.	Phenolic compounds	11
2.2.3.	Antioxidants	13
2.3.	Wheat flour and selected sources of by-products	17
2.3.1.	Chemical composition of wheat flour 72%	
	extraction	17
2.3.2.	Tomato pomace powder	18
2.3.2.1.	Chemical composition of tomato pomace	
	powder	19
2.3.2.2.	Tomato pomace powder source of antioxidants	20
2.3.2.3.	Use of tomato pomace powder in bakery products	26
2.3.3.	Mango seed kernels powder	27
2.3.3.1.	Chemical composition of mango seed kernels	
	powder	29
2.3.3.2.	Mango seed kernels powder source of	
	antioxidants	31
2.3.3.3.	Use of mango seed kernels powder in bakery	~~
	products	32
2.3.4.	Pomegranate peels powder	34

36 of antioxidants 37 wder in bakery 40
vder in bakery
-
icts properties 43
S 46
46
46
46
46
46
46
47
47
peel and seeds) 47
powders 47
s powder 47
lends 48
48
48
48
51

3.2.6.1.	Physical Properties	51
3.2.6.2.	Chemical Properties	52
3.2.6.3.	Determination of dietary fibers	53
3.2.6.4.	Determination of phenolic and flavonoid	
	compounds	56
3.2.7.	Physical properties of bakery products	58
3.2.7.1.	Physical properties of cake	58
3.2.7.2.	Physical properties of biscuit	58
3.2.8.	Determination of acid value and peroxide value	
	of biscuit samples during storage period	58
3.2.8.1.	Extraction of oil from biscuits	58
3.2.8.2.	Determination of acid value and peroxide value	
	of biscuit samples	59
3.2.9.	Determination of cake staling using alkaline	
	water retention capacity (AWRC) method	59
3.2.10.	Determination of color in the biscuit and cakes	
	by Hunter Lab	60
3.2.11.	Sensory evaluation of bakery products	60
3.2.12.	Statistical analysis	61
4.	RESULTS AND DISCUSSION	62
4.1.	Chemical composition of used materials	62
4.2.	Minerals content of used materials	64
4.3	Total, soluble, and insoluble dietary fiber of	
	used materials	67

	ARABIC SUMMARY	
6.	REFERENCES	126
5.	SUMMARY AND CONCLUSION	118
4.7.2	Properties of produced biscuit	97
4.7.1	Properties of produced cake	78
4.7	Properties of bakery product	78
4.6	Physical properties of used materials	76
4.5	Identification of phenolic compounds content of used materials	70
4.4	Total phenolic and flavonoid compounds of used materials	69

LIST OF TABLES

No.	Title	Page
1.	Cake formula prepared and used in the current study	49
2.	Biscuit formula prepared and used in the current study	50
3.	Proximate chemical composition of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder (% on a dry weight basis)	63
4.	Minerals content of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder (mg/100 g on a dry weight basis)	65
5.	Total, soluble and insoluble dietary fiber of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder (g/100 g dry basis)	68
6.	Total phenolic and flavonoid compounds of wheat flour tomato pomace powder, mango seeds kernel powder and pomegranate peels powder	70
7.	Identification of phenolic compounds content of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder by	
	HPLC (μ g/g dry matter)	71

No.	Title	Page
8.	Physical properties of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	77
9.	Proximate chemical composition of produced cake samples (% on a dry weight basis)	79
10.	Minerals content of produced cake samples (mg/100g on a dry weight basis)	81
11.	Total, soluble and insoluble dietary fiber of produced cake samples (g/100g dry basis)	83
12.	Total phenolic and flavonoid compounds of cake samples prepared by partial replacement of wheat flour by tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	85
13.	Physical measurements of cake samples prepared by partial replacement of wheat flour by tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	87
14.		89
15.	Staling rate of cake samples prepared by partial replacement of wheat flour by tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder as measured by Alkaline water retention capacity (ΔWBC^{9})	01
	water retention capacity (AWRC %)	91

No.	Title	Page
16.	Sensory evaluation of cake samples	95
17.	Proximate chemical composition of produced biscuit samples (% on a dry weight basis)	98
18.	Minerals content of produced biscuit samples (mg/100g on a dry weight basis)	100
19.	Total, soluble and insoluble dietary fiber of produced biscuit samples (g/100g dry basis)	103
20.	Total phenolic and flavonoid compounds of biscuit prepared by substituted of wheat flour with tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	105
21.	Physical measurements of biscuit prepared by substituted of wheat flour with tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	106
22.	Hunter Lab for biscuit samples prepared by partial replacement of wheat flour by tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	109
23.	Changes in acid and peroxide values of biscuit samples during storage at room temperature $(25^{\circ}C \pm 2)$	110
24.	Sensory evaluation of biscuit samples	115

VIII

LIST OF FIGURES

No.	Title	Page
1.	Proximate chemical composition of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder	64
2.	Minerals content of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder (mg/100 g on a dry	
	weight basis)	66
3.	Dietary fiber of used materials	69
4.	HPLC chromatogram of wheat flour phenolic compounds	72
5.	HPLC chromatogram of Tomato pomace powder phenolic compounds	73
6.	HPLC chromatogram of Mango seeds kernel powder phenolic compounds	74
7.	HPLC chromatogram of Pomegranate peels powder phenolic compounds	75
8.	Staling rate of cakes prepared by partial replacement of wheat flour by tomato pomace powder	92
9.	Staling rate of cakes prepared by partial replacement of wheat flour by mango seeds kernel	
	powder	92

No.	Title	Page
10.	Staling rate of cakes prepared by partial replacement of wheat flour by pomegranate peels powder	93
11.	Sensory evaluation of cakes prepared by partial replacement of wheat flour by pomegranate peels powder	96
12.	Sensory evaluation of cakes prepared by partial replacement of wheat flour by mango seeds kernel powder	96
13.	Sensory evaluation of cakes prepared by partial replacement of wheat flour by pomegranate peels powder	97
14.	Staling rate of biscuits prepared by partial replacement of wheat flour by tomato pomace powder	111
15.	Staling rate of biscuits prepared by partial replacement of wheat flour by mango seeds kernel powder	112
16.	Staling rate of biscuits prepared by partial replacement of wheat flour by pomegranate peels powder.	113

No.	Title	Page
17.	Sensory evaluation of biscuit prepared by partial	
	replacement of wheat flour by pomegranate peels	
	powder	116
18.	Sensory evaluation of biscuit prepared by partial	
	replacement of wheat flour by mango seeds kernel	
	powder	116
19.	Sensory evaluation of biscuit prepared by partial	
	replacement of wheat flour by pomegranate peels	
	powder	117