EFFECT OF USEING *MORINGA OLEIFERA* ON BROILER PERFORMANCE IN EGYPT AND SUDAN .

BY

AHMED RAGAB MOHAMMED GOMAA

B.Sc. Agric .Sci.(Agricultural Engineering), Fac. Agric . Azhar Univ., Egypt. 2008

Diploma of Natural Resources, Faculty of African . Postgraduate Studies Cairo University, 2011

M. Sc. (Animal Resources.), Faculty of African . Postgraduate Studies, Cairo University, 2013

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Natural Resources

FACULTY OF AFRICAN.POSTGRADUATE STUDIES

Cairo University

EGYPT

2020

i

 Name of Candidate: Ahmed Ragab Mohammed
 Degree: Doctor.

 Title of Thesis: EFFECT OF USEING MORINGA OLEIFERA ON BROILER
PERFORMANCE IN EGYPT AND SUDAN.
 PERFORMANCE IN EGYPT AND SUDAN.

 Supervisors: Dr. Wafai Zaki Azer Mikhail
Dr. Mamdouh Omar Abd- Elsamee
 Dr. Tarek Mohamed Elafifi

Department: Natural Resources

Branch: Animal Resource

Approval: 29 /12 / 2020

ABSTRACT

The present work was conducted to evaluate Moringa oleifera leaf meal (MOLM) as a plant protein source of broiler diets and studying the effect of increasing MOLM levels in broiler diets on growth performance and carcass characteristics. In this study, 320 one day-old broiler chicks (Cobb500) were randomly distributed into 8 treatments, with 4 replicates and 10 birds each in a completely randomized design. Four levels of MOLM and two levels of enzymes preparation were used in a 4 x 2 factorial arrangement. The MOLM levels were 0, 2.5, 5 and 7.5%. (treatments 1, 2, 3 and 4) inclusion levels respectively, in a complete randomized design experiment. The basal diet were formulated as control according to strain guide recommendations and used for the starter, grower and finisher . A commercial enzyme (Avemix – xg 10) was added at 0 and 0.01% of the diet. Water and feed in mash form were offered *ad-libitum* during the experimental period which lasted for 36 day of age.

Results showed that significant differences were observed among MOLM levels for the average values of BW, BWG, FI and FCR. Results obtained indicated that feeding broiler chicks on diets containing different levels of MOLM up to 7.5% with or without enzyme supplementation improved body weight, body weight gain and feed conversion values. Either of MOLM levels, enzyme supplementation, or their interaction did not affect the average values of carcass characteristics.

In conclusion, use of MOLM at 2.5% with enzymes recorded the best results compared to other treatments. Whoever, the results obtained cleared that MOLM can be successfully fed at levels up to 7.5% in broiler diets, without adverse effect on their performance and carcass yield.

Key words :Broilers, Moringa olifera leaf meal, Avemix–xg 10 enzyme, Performance, Carcass quality.

LIST OF CONTENTS

Cont.No		Pag.No
	LIST OF TABLES	Vii
	LIST OF FIGURS	Viii
1	LIST OF ABBREVIATION:	<u>X</u>
2	REVIEW OF LITERATURE.	3
	2.1. Description of moringa oleifera	3
	2.2. Uses of moringa oleifera	5
	2.3. Nutritive value of moringa plant	8
	2.3.1. Phytochemicals of moringa oleifera	10
	2.4. Antioxidant in Moringa oleifera	11
	2.4.1. Potential Toxicity of Moringa oleifera	12
	2.5. Using Moringa oleifera leaf meal (MOLM) in poultry diets	14
	2.5.1. Effect of using moringa oleifera leaf meal on productive performance	15
	2.5.2. Effect of using moringa oleifera leaf meal on carcass charachtaristics	21
	2.5.3. Effect of using moringa oleifera leaf meal on blood analysis	22
	2.5.4. Effect of using Moringa oleifera Leaf meal on mortality rate	23
	2.5.5. Effect of using Moringa oleifera Leaf meal on economical efficiency	24
	2.6. Using enzymes in the poultry diets	25
3	MATERIALS AND METHODS	27
	3.1. Experimental diets	27
	3.1.2. The tested material	27
	3.1.3. Enzyme preparation	27
	3.2. Experimental birds	27
	3.3. Experimental design	28
	3.4. Management	32
	3.5 Performance criteria	32
	3.5.1. Growth performance of chicks	32
	3.5.1.1.Measurements	33
	a. Average live body weight	33
	b. Average live body weight gain	33
	c. Feed intake	33

	d. Feed conversion ratio	34
	3.6. Mortality rate	34
	3.7. Carcass characteristics	34
Cont.No		Pag.No
	3.8. Blood serum constituents	35
	3.9. Sensory evaluation	35
	3.10. Economic efficiency (EE)	36
	3.11. Statistical analyses	36
4	RESULTS AND DISCUSSION	38
	4.1.Growth performance	38
	4.1.1. Starter period (1-12 d)	38
	4.1.2. Grower period (13-24 d)	45
	4.1.3. Finisher period (25-36 d)	52
	4.1.4. Overall period (1-36 d)	59
	4.1.5Mortality	61
	4.2. Carcass characteristics	68
	4-3Blood serum constituents	72
	4.4Sensory evaluation	74
	4.5Economic efficiency	76
5	SUMMARY AND CONCLUSION	78
6	REFRENCES	81
	ARABIC SUMMARY	

LIST OF TABLES

Cont.No		Pag.No
Table 1	Analysis of nutritional value of Moringa pods, fresh (raw) leaves and	9
	dried leaf powder per 100 g of edible portion.	
Table 2	Chemical composition of extracted and unextracted moringa leaves	10
Table 3	Experimental design.	28
Table 4	Composition and calculated chemical analysis of basal diets during the starter period (1-12 days).	29
Table 5	Composition and calculated chemical analysis of basal diets during the grower period (13-24 days).	30
Table 6	Composition and calculated chemical analysis of basal diets during the finisher period (25-36 days).	31
Table 7	Vaccination program	32
Table 8	Effect of MOLM levels, enzyme supplementation and their interaction on broiler performance at the starter period $(1 - 12d)$.	40
Table 9	Effect of MOLM levels, enzyme supplementation and their interaction on broiler performance at the grower period (13-24 d).	47
Table 10	Effect of MOLM levels, enzyme supplementation and their interaction on broiler performance at the finisher period (25-36 d)	54
Table 11	Effect of MOLM levels, enzyme supplementation and their interaction on broiler performance at the overall period $(1 - 36d)$.	63
Table 12	Effect of MOLM levels, enzyme preparation and their interaction on carcass characteristics.	71
Table 13	Effect of feeding different levels of moringa leaf meal on concentrations of some blood serum constituents of 36-day-old broiler chicks.	73
Table 14	Effect of feeding different levels of moringa leaf meal on sensory parameters of breast and thigh meat of broiler chicks .	75
Table 15	Effect of feeding different levels of moringa leaf meal on economic efficiency of broiler production from 0-36 days old.	77

LIST OF FIGURS

Cont.No		Pag.No
Figure 1	Effect of MOLM levels and enzymes supplementation on body weight at the end of starter period $(1 - 12d)$.	41
Figure 2	Effect of MOLM levels and enzymes supplementation on weight gain at the end of starter period $(1 - 12d)$.	41
Figure 3	Effect of MOLM levels and enzymes supplementation on feed intake at the end of starter period $(1 - 12d)$.	42
Figure 4	Effect of MOLM levels and enzymes supplementation on FCR at the end of starter period $(1 - 12d)$.	42
Figure 5	Effect of interaction between MOLM levels and enzymes supplementation on body weight at the end of starter period $(1 - 12d)$.	43
Figure 6	Effect of interaction between MOLM levels and enzymes supplementation on weight gain at the end of starter period $(1 - 12d)$.	43
Figure 7	Effect of interaction between MOLM levels and enzymes supplementation on feed intake at the end of starter period $(1 - 12d)$.	44
Figure 8	Effect of interaction between MOLM levels and enzymes supplementation on FCR at the end of starter period $(1 - 12d)$.	44
Figure 9	Effect of MOLM levels and enzymes supplementation on body weight at the end of grower period (13- 24d).	48
Figure 10	Effect of MOLM levels and enzymes supplementation on weight gain at the end of grower period (13- 24d).	48
Figure 11	Effect of MOLM levels and enzymes supplementation on feed intake at the end of grower period (13- 24d).	49
Figure 12	Effect of MOLM levels and enzymes supplementation on FCR at the end of grower period (13-24d).	49
Figure 13	Effect of interaction between MOLM levels and enzymes supplementation on body weight at the end of grower period (13-24d).	50
Figure 14	Effect of interaction between MOLM levels and enzymes supplementation on weight gain at the end of grower period (13-24d).	50
Figure 15	Effect of interaction between MOLM levels and enzymes supplementation on feed intake at the end of grower period (13- 24d).	51
Figure 16	Effect of interaction between MOLM levels and enzymes supplementation on FCR at the end grower period (13- 24d).	51
Figure 17	Effect of MOLM levels and enzymes supplementation on body weight at the end of finisher period $(25 - 36d)$.	55
Figure 18	Effect of MOLM levels and enzymes supplementation on weight gain at the end of finisher period $(25 - 36d)$.	55
Figure 19	Effect of MOLM levels and enzymes supplementation on feed intake at the end of finisher period $(25 - 36d)$.	56
Figure 20	Effect of MOLM levels and enzymes supplementation on FCR at the end of finisher period $(25 - 36d)$.	56
Figure 21	Effect of interaction between MOLM levels and enzymes supplementation on body weight at the end of finisher period $(25 - 36d)$.	57

Figure 22	Effect of interaction between MOLM levels and enzymes supplementation on weight gain at the end of finisher period (25 – 36d).	57
Figure 23	Effect of interaction between MOLM levels and enzymes supplementation on feed intake at the end of finisher period (25 – 36d).	58
Figure 24	Effect of interaction between MOLM levels and enzymes supplementation on FCR at the end of finisher period $(25 - 36)$.	58
Figure 25	Effect of MOLM levels and enzymes supplementation on body weight at the end of overall period $(1 - 36d)$.	64
Figure 26	Effect of MOLM levels and enzymes supplementation on weight gain at the end of overall period $(1 - 36d)$.	64
Figure 27	Effect of MOLM levels and enzymes supplementation on feed intake at the end of overall period $(1 - 36d)$.	65
Figure 28	Effect of MOLM levels and enzymes supplementation on FCR at the end of overall period $(1 - 36d)$.	65
Figure 29	Effect of interaction between MOLM levels and enzymes supplementation on body weight at the end of overall period $(1-36d)$.	66
Figure 30	Effect of interaction between MOLM levels and enzymes supplementation on weight gain at the end of overall period $(1-36d)$.	66
Figure 31	Effect of interaction between MOLM levels and enzymes supplementation on feed intake at the end of overall period $(1 - 36d)$.	67
Figure 32	Effect of interaction between MOLM levels and enzymes supplementation on FCR at the end overall period $(1 - 36d)$.	67