

Faculty of Engineering Department of Environmental Engineering

"Utilization OF Agricultural Waste for Treating Waste Water from Food Industries"

#### A THESIS

Submitted to the Faculty of Engineering, Helwan University In Partial Fulfillment of the Requirements of The Degree of Doctor of Philosophy of **Environmental Engineering** 

> Prepared by Eng. Sanaa Ahmed Hassan Mohamed Agricultural Research Center

> > Under Supervision of

**Prof. Dr. Mohamed Ali Ahmed Hassan El- Dosoky** Faculty of Engineering, Helwan University

# Prof. Dr. Manal Abdel Rahman Sorour

Agricultural Research Center

## CONTENTS

| List of Tablesi                                                                             |
|---------------------------------------------------------------------------------------------|
| List of Figuresvi                                                                           |
| Nomenclaturev                                                                               |
| Abstract1                                                                                   |
| Chapter 1: Introduction                                                                     |
| 1.1. Cheese processing wastewater current state in Egypt5                                   |
| 1.2. Pomegranate peels prospective as a coagulant5                                          |
| 1.3. The objectives of the present study                                                    |
| 1.4. Lab scale cost analysis of water treatment using alum verses pomegranate peels extract |
| 1.5. Thesis outline7                                                                        |
| Chapter 2: Literature Deview 10                                                             |
| Chapter 2. Literature Keview10                                                              |
| 2.1. Coagulation and flocculation processes in water treatment                              |
| 2.1. Coagulation and flocculation processes in water<br>treatment                           |
| <ul> <li>2.1. Coagulation and flocculation processes in water treatment</li></ul>           |
| 2.1. Coagulation and flocculation processes in water<br>treatment                           |
| 2.1. Coagulation and flocculation processes in water<br>treatment                           |
| 2.1. Coagulation and flocculation processes in water<br>treatment                           |
| 2.1. Coagulation and flocculation processes in water<br>treatment                           |
| 2.1. Coagulation and flocculation processes in water<br>treatment                           |

| 2.5.<br>treatm   | Natural                | Coagulants      | application    | in                    | water        |
|------------------|------------------------|-----------------|----------------|-----------------------|--------------|
| Chap             | ter 3: Mat             | erials and M    | lethods        | •••••                 | 29           |
| 3.1. N           | laterials, cl          | nemicals and    | media          | ••••••                | 29           |
| 3.1.1.           | Wastewate              | er samples      |                | • • • • • • • • • • • | 29           |
| 3.1.2.           | Pomegrana              | ate peels       |                |                       | 30           |
| 3.1.3.           | Alum                   |                 |                |                       | 30           |
| 3.1.4.           | Folin- Cio             | calteu reagen   | t              | •••••                 | 31           |
| 3.1.5.           | Sodium ca              | rbonate         |                | •••••                 | 31           |
| 3.1.6.           | Hydrochlo              | ric acid and s  | Sodium hydrox  | ide                   | 31           |
| 3.1.7:           | Pathogenie             | c bacterial str | ains           |                       | 31           |
| 3.1.8.           | Media                  |                 |                | •••••                 | 32           |
| 3.2. E           | xperimenta             | l Methods       |                |                       | 32           |
| 3.2.1.           | Preparatio             | n of bio coag   | ulants         |                       | 32           |
| 3.2.2.           | Primary tre            | eatment expe    | riments        |                       | 33           |
| 3.2.3.<br>peels. | Preparatio             | on of bio co    | agulant from   | pomeg                 | granate      |
| 3.2.4.<br>extrac | Optimiz<br>tion proces | ation of        | polyphenolic   | comp                  | oounds<br>36 |
| 3.3. C           | bagulation             | process         |                | ••••••                | 37           |
| 3.3.1.           | Jar test pro           | cedures         |                | •••••                 | 37           |
| 3.3.2.           | Optimizati             | on of coagul    | ation process  | •••••                 | 38           |
| 3.4.0            | Characteriz            | ation analysis  | 5              |                       | 39           |
| 3.4.1.           | Measurem               | nent of total   | polyphenolic o | compo                 | unds<br>39   |

| 3.4.2.Measurement Of TSS                                             | 40           |
|----------------------------------------------------------------------|--------------|
| 3.4.3. Measuring rheological properties of sludge                    | 41           |
| 3.4.4. Measuring residual aluminum in sludge                         | 41           |
| 3.5. Antimicrobial effects of coagulants                             | 42           |
| 3.6. Zeta potential test                                             | 42           |
| Chapter 4: Results and Discussion                                    | 43           |
| 4.1. Primary coagulation experiments                                 | 43           |
| 4.2. Extraction of bio active materials from pomegapeels             | ranate<br>47 |
| 4.2.1. Effect of particle size                                       | 48           |
| 4.2.2. Effect of solid/ water ratio                                  | 50           |
| 4.2.3. Effect of mechanical stirring speed                           | 51           |
| 4.2.4. Effect of extraction temperature                              | 52           |
| 4.2.5: Studying kinetics of extraction process                       | 54           |
| 4.2.6. Thermodynamic studies                                         | 62           |
| 4.3. Coagulation potentials of pomegranate extract                   | peels<br>64  |
| 4.3.1. Effect of coagulant dose                                      | 65           |
| 4.3.2. Influence of pH value                                         | 66           |
| 4.3.3. Influence of slow mixing speed                                | 68           |
| 4.3.4. Influence of slow mixing time                                 | 64           |
| 4.3.5. Influence of settling time                                    | 70           |
| 4.3.6. Overall effects of bio-coagulant on treated characterizations | water<br>72  |
| 4.3.7. Coagulation mechanism                                         | 74           |

| 4.4. Coagulation process of cheese processing effluent using aluminum sulfates |
|--------------------------------------------------------------------------------|
| 4.4.1. Effect of alum dose78                                                   |
| 4.4.2. Effect of pH value79                                                    |
| 4.4.3. Coagulation mechanism                                                   |
| 4.5. Antimicrobial potentials of the natural coagulant                         |
| 4.5.1. Inactivation potentials for pomegranate peels extract                   |
| 4.5.2. Inactivation potentials of Aluminum Sulfates solution                   |
| 4.6. Produced sludge characterizations                                         |
| 4.6.1. Rheological study of bio coagulant sludge                               |
| 4.6.2. Rheological study of Alum treatment sludge94                            |
| 2.6.3. SEM analysis of the sludge                                              |
| 2.6.4. FTIR of the sludge101                                                   |
| <b>Chapter 5: Conclusions and Recommendations</b> 104                          |
| 5.1. Conclusions104                                                            |
| 5.2. Recommendations for future work105                                        |
| Summary106                                                                     |
| References108                                                                  |
| List of Published Papers                                                       |
| Arabic Summary                                                                 |

### LIST OF FIGURES

| Fig. No | Figure                                                                                                              | Page |
|---------|---------------------------------------------------------------------------------------------------------------------|------|
| (2.1)   | A schematic diagram for coagulation<br>system in traditional water treatment<br>plant                               | 12   |
| (3.1)   | Aqueous extract for: banana peels, pomegranate peels and potatoe peels                                              | 34   |
| (3.2)   | Calibration curve for Gallic acid                                                                                   | 40   |
| (4.1)   | Comparison between coagulation<br>efficiencies for banana peels,<br>pomegranate peels and potatoes peels<br>extract | 45   |
| (4.2)   | TSS removal efficiencies of three different agricultural waste extracts                                             | 46   |
| (4.3)   | Effect of particle size on the extraction yield of polyphenols                                                      | 49   |
| (4.4)   | Effect of solid/water ratio on the extraction yield of polyphenol                                                   | 50   |
| (4.5)   | Effect of agitation speed on the extraction yield of polyphenols.                                                   | 51   |
| (4.6)   | Effect of temperature on the extraction yield of polyphenols                                                        | 53   |
| (4.7)   | Effect of bio coagulant dose on TSS removal efficiency                                                              | 66   |
| (4.8)   | Effect of pH value on TSS removal efficiency using bio coagulant                                                    | 67   |
| (4.9)   | Effect of mixing speed on removal efficiency using bio coagulant                                                    | 69   |

| Fig. No | Figure                                                                                                | Page |
|---------|-------------------------------------------------------------------------------------------------------|------|
| (4.10)  | Effect of mixing time on TSS removal efficiency using bio coagulant                                   | 70   |
| (4.11)  | Formation of flocs in coagulation process using pomegranate peels extract                             | 71   |
| (4.12)  | Effect of settling time on TSS removal efficiency using bio coagulant                                 | 72   |
| (4.13)  | Zeta potential for water treated by bio coagulant at different doses                                  | 76   |
| (4.14)  | Effect of dose on TSS removal efficiency using alum                                                   | 79   |
| (4.15)  | Effect of pH on TSS removal efficiency using alum.                                                    | 80   |
| (4.16)  | Inhibition zone diameter related to polyphenols concentration                                         | 85   |
| (4.17)  | Inhibition zone diameter related to polyphenols concentration                                         | 86   |
| (4.18)  | Thixotropic behavior for the sludge<br>produced from using bio coagulant at<br>4% solid concentration | 89   |
| (4.19)  | Effect of solid concentration on bio coagulant sludge viscosity                                       | 90   |
| (4.20)  | Effect of bio coagulant sludge solid concentration on shear rate- shear stress                        | 91   |
| (4.21)  | The thixotropic behavior for alum sludge at 3% solid concentration                                    | 95   |
| (4.22)  | Effect of TSS on viscosity of alum sludge                                                             | 96   |

| Fig. No | Figure                                                             | Page |
|---------|--------------------------------------------------------------------|------|
| (4.23)  | Effect of solid concentration on shear rate- shear stress          | 97   |
| (4.24)  | SEM for dried sludge produced from coagulation using bio coagulant | 99   |
| (4.25)  | SEM for dried sludge produced from coagulation using alum          | 100  |
| (4.26)  | FTIR analysis of sludge produced using bio coagulant               | 102  |
| (4.27)  | FTIR analysis of sludge produced using Alum.                       | 103  |

#### LIST OFTABLES

| Table No | Table                                                                               | Page |
|----------|-------------------------------------------------------------------------------------|------|
| (1.1)    | Schedule for working in the thesis                                                  | 4    |
| (3.1)    | Cheese processing wastewater characterizations                                      | 30   |
| (4.1)    | Kinetic modelling of extraction of pomegranate peels at 25 °C                       | 58   |
| (4.2)    | Kinetic modelling of extraction of pomegranate peels at 40 °C                       | 59   |
| (4.3)    | Kinetic modelling of extraction of pomegranate peels at 60 °C                       | 60   |
| (4.4)    | Kinetic modelling of extraction of pomegranate peels at 80 °C                       | 61   |
| (4.5)    | Thermodynamic parameters for<br>extraction of polyphenols from<br>pomegranate peels | 63   |
| (4.6)    | Final characterization of treated water using bio coagulant                         | 74   |
| (4.7)    | Final characterization of treated water using alum                                  | 81   |
| (4.8)    | Mathematical models parameters for bio coagulant sludge                             | 94   |
| (4.9)    | Mathematical models parameters for alum sludge                                      | 98   |

#### ABSTRACT

Increase in environmental awareness at few last decades raises the interest of applying natural coagulants as an alternative to chemical ones.

In developing countries and in Egypt in particular, industrial water treatment is usually neglected. One of the reasons causes facilities avoiding treating industrial effluent is the high cost of chemicals used in treatment process. Beside high cost, chemicals used in water treatment plants are environmentally suspicious with issues related to disposal.

Coagulation and disinfection abilities of pomegranate peels aqueous extract were assessed in current work. Jar test procedures and desk well diffusion method was used in these purposes. Parameters affecting coagulation process were evaluated and optimized. Total suspended solid removal efficiency was the parameter used in evaluating treatment process effectiveness. Tests were performed using standard methods.

The results of this work revealed that pomegranate peels aqeous ex has great potentials as natural coagulant in cheese industry effluent treatment. Furthermore, sludge produced from treatment process using pomegranate peels extract was compared to that produced of using aluminum sulfate. Studying rheological properties of flocs using a Brokfield rheometer showed that the use of peels as coagulant produced sludge with less attendance for pipe blocking and slightly more compact than Aluminum sulfates sludge.

pH value of treated water using the bio coagulant remained largely unaffected after treatment contrary to that of Alum treated water. Coagulation mechanism in both bio coagulant and alum was studied. Results revealed that in case of bio coagulant bridging and adsorption mechanism is the weighted hypothesis to explain the process. In case of alum, charge neutralization is the most likely mechanism. Bacterial inactivation was also notable, applying pomegranate peels extract on E-coli, Staphylococcus aureus and total coliform leads to formation of satisfied inhibition zone at lower concentrations compared to Alum solution.

Keywords: Extraction, Polyphenolic compounds, Pomegranate peels, Cheese processing waste water, Natural coagulants.