

ENHANCING FERTILITY AND IMMUNITY UNDER STRESS CONDITIONS IN LOCAL CHICKENS

By

Maged Abd El-Naby Ismael El-Deeb

B. Sc. Pol. Prod., Fac. Agric., Kafrelsheikh Univ., 2008. M.Sc. Polt. Prod., Fac. Agric., Mansoura Univ., 2014.

Thesis

Submitted in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

In Agricultural Science Poultry production

2021

ABSTRACT

This experiment was carried out to evaluate the effect of agro-industrial by product in Inshas local strain under stress conditions. 360 birds aged 24-week-old were used in 10 treatments as Pomegranate peel and tomato pomace were supplemented at 2% and 4% powder or extracts in the diets of laying hens exposed to oxidative stress induced by Dexamethasone compared with negative and positive control groups for 12 weeks. The addition of pomegranate peels or tomato pomace reduced the adverse effects of oxidative stress on productive performance, physiological status of the body and blood components, as well as tissue integrity.

Based on obtained results, the current study recommends the possibility of using dietary pomegranate peels and tomato pomace powders up to 4% not only for alleviating the adverse effects of oxidative stress in the pre-peak laying period but also as a sustainable and economical approach for agriculture

CONTENTS

I. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Oxidative Stress	5
2.1.1. Sources of stress in birds	6
2.1.1.1. Shortage of antioxidants	6
2.1.1.2. Stress Hormone	7
2.1.1.3. Avian Virus	8
2.1.2. Influences of oxidative stress on important physiological processes	8
2.1.2.1. Lipids	8
2.1.2.2. Proteins	9
2.1.2.3. Carbohydrate	11
2.1.2.4. Hormonal transformations	12
2.1.3. Alleviation of the adverse effects of oxidative stress	13
2.1.3.1. Antioxidant defense systems	13
2.1.3.2. Effects of phytochemicals:	15
2.1.3.3. The agro-industrial by-products	17
2.2. Pomegranate peels	17
2.2.1. Biological compounds of pomegranate peels	18
2.2.2. Pomegranate peels as feed additives	20
2.3. Tomato pomace	23
2.3.1. Biological compounds of tomato pomace	24
2.3.2. Tomato pomace as feed additives:	25
3. MATERIALS AND METHODS	29
3.1. Birds	29
3.2. General management	29
3.3. Materials	30
3.4. Experimental design	31
3.5. Criteria of response	33
3.5.1. Productive performance	33
3.5.1.1. Change in body weight and mortality rate	33
3.5.1.2. Feed intake and egg production	34
3.5.2. Egg quality traits	34
3.5.2.1. Egg quality characteristics	34
3.5.2.2. Egg biochemical analysis	35
3.5.3. Relative weight of some internal organs	36
3.5.4. Laying hens blood samples	36
3.5.4.1. Hematological variables of blood	36
3.5.4.2. Biochemical constituents of blood	37
3.5.5. Reproductive performance	38
3.5.5.1. Semen quality	38

Contents

3.5.5.2. Fertility and hatchability of eggs	38
3.5.6. Histopathology	39
3.5.7. Economic efficiency	39
3.5.8. Statistical analysis	39
4. RESULTS AND DISCUSSIONS	41
4.1. Productive performance	41
4.2. Egg quality traits	45
4.2.1. Egg quality characteristics	45
4.2.2. Egg biochemical analysis	47
4.3. Relative weight of some internal organs	49
4.4. Laying hens blood samples	50
4.4.1. Hematological variables of blood	50
4.4.2. Biochemical constituents of blood	52
4.4.2.1. Biochemical aspects	53
4.4.2.2. Enzymes activities	55
4.4.3. Oxidative status	58
. 4.5. Reproductive performance	60
4.5.1. Semen quality	60
4.5.2. Fertility and hatchability	63
4.6. Histopathological examination	65
4.7. Economic efficiency	71
SUMMARY	73
CONCLUSION	80
REFERENCES	81
ARABIC SUMMARY	

List Of Tables

Table (1)	Chemical composition of pomegranate peel, and tomato pomace powders	31
Table (2)	Composition and calculated chemical analysis of the experimental diets	32
Table (3)	Effect of different levels of pomegranate peels and tomato pomace on productive performance of Egyptian local chickens subjected to oxidative stress	42
Table (4)	Effect of different levels of pomegranate peels and tomato pomace on egg quality of Egyptian local chickens subjected to oxidative stress	46
Table (5)	Effect of different levels of pomegranate peels and tomato pomace on Relative weight of some internal organs on Egyptian local chickens subjected to oxidative stress	49
Table (6)	Effect of different levels of pomegranate peels and tomato pomace on hematological variables of blood on Egyptian local chickens subjected to oxidative stress	51
Table (7)	Effect of different levels of pomegranate peels and tomato pomace on biochemical aspects of blood on Egyptian local chickens subjected to oxidative stress	54
Table (8)	Effect of different levels of pomegranate peels and tomato pomace on some enzyme activities of Egyptian local chickens subjected to oxidative stress	56
Table (9)	Effect of different levels of pomegranate peels and tomato pomace on Oxidative status of Egyptian local chickens subjected to oxidative stress	58
Table (10)	Effect of different levels of pomegranate peels and tomato pomace on Semen quality of Egyptian local chickens subjected to oxidative stress	61
Table (11)	Effect of different levels of pomegranate peels and tomato pomace on Fertility and hatchability of Egyptian local chickens subjected to oxidative stress	63
Table (12)	Effect of different levels of pomegranate peels and tomato pomace on spleen histopathology of Egyptian local chickens subjected to oxidative stress	65
Table (13)	Effect of different levels of pomegranate peels and tomato pomace on liver histopathology of Egyptian local chickens subjected to oxidative stress	67
Table (14)	Effect of different levels of pomegranate peels and tomato pomace on tests histopathology of Egyptian local chickens subjected to oxidative stress	69
Table (15)	Economic efficiency of Egyptian local chickens supplemented with pomegranate peels and tomato pomace under oxidative stress conditions	73

List Of Figures

Fig. (1):	Effect of different levels of pomegranate peels and tomato pomace on egg yolk content of cholesterols on Egyptian local chickens subjected to oxidative stress	48
Fig. (2):	Effect of different levels of pomegranate peels and tomato pomace	48
Fig. (3):	Effect of different levels of pomegranate peels and tomato pomace on plasma corticosterone of Egyptian local chickens subjected to oxidative stress	56
Fig. (4):	Spleen of group2 showed depletion of lymphocytes (H&Ex100)	66
Fig. (5):	Spleen of group2 showed thickening of the wall of blood vessels, with edema, endotheliosis (H&Ex400)	66
Fig. (6):	Spleen of group2 showed thrombus and thickening of the wall of blood vessels (H&Ex50)	66
Fig. (7):	Spleen of group2 showed fibrinous exudate in the reticular sheaths (H&Ex100)	66
Fig. (8):	Liver of group2 showed perivascular hemorrhage (H&Ex100)	68
Fig. (9):	Liver of group2 showed vascular degeneration of hepatocytes (H&Ex400)	68
Fig. (10):	Liver of group2 showed thrombus formation (H&Ex400)	68
Fig. (11):	Testicles of group2 showed intertubular congestion (H&Ex100)	70
Fig. (12):	Testicles of group2 showed destruction with sloughed epithelium in the lumen of tubules (H&Ex100)	70
Fig. (13):	Testicles of group2 showed vascular degeneration of the epithelium of seminiferous tubules (H&Ex100)	70
Fig. (14):	Testicles of group2 showed few spermatids (H&Ex100)	70