MICROPROPAGATION OF SOME INDOOR ORNAMENTAL PLANTS

By

REDA MOHAMED ABD EL BASET

B.Sc. Agric. Sci. (Horticulture), Fac.Agric., Ain Shams University, 2002 M.Sc. Agric. Sc. (Ornam., Medic. and Aroma. Plant), Fac. Agric., Ain Shams Univ., 2009

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Ornamental, Medicinal and Aromatic Plants)

Department of Horticulture Faculty of Agriculture Ain Shams University

2020

ABSTRACT

REDA MOHAMED ABD EL BASET: MICROPROPAGATION OF SOME INDOOR ORNAMENTAL PLANTS. Unpublished M.Sc. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2020.

These experiments were carried out in the Tissue Culture Laboratory, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt during the period from 2015 to 2017, to investigate some factors affecting the micropropagation of 2 indoor ornamental plants *Alocasia amazonica* and *Epithelantha micromeres* by tissue culture.

The first plant: Alocasia amazonica

Experiment 1: Multiplication: the use of 3 ppm BAP: had the highest number of shoots. 2 ppm Kinetin: got the highest values for shoot length, shoot fresh weight and number of roots.

Experiment 2: Agar substitutes and sugar availability: potato with sugar had the highest degree for all studied characters, i.e. Number of shoots, shoot fresh weight, shoot length, number of leaves, number of roots, root fresh weight and root length.

Experiment 3: Effect of auxin type and concentration and their interaction on rooting, at 2 ppm IBA: acquired the highest number of shoots, number of leaves and number of roots. The use of 3 ppm IBA: got the highest number of shoots, number of leaves and number of roots.

Experiment 4: Acclimatization: Perlite+peatmoss: had the heaviest plant fresh weight and number of roots, while peatmoss achieved the highest value for plant fresh weight.

The second plant: *Epthelantha micromeris*: Experiment 5: soaking seeds in GA_3 at 1000 ppm for 20 min resulted in higher percentage of germination compared to soaking in a distilled water.

Experiment 6: Multiplication: BAP at 2-3 ppm obtained the greatest number of shoots and heavest cluster fresh weight. Kinetin at 3 ppm also achieved the highest number of shoots

Experiment 7: Vetrification: Agar at 11 g/l without coal achieved the lowest vetrification%.

Experiment 8: Rooting: the use of NAA at 2 ppm: got the first rank concerning number of roots, root fresh weight, shoot length and plant fresh weight.

Experiment 9: Acclimatization: Perlite, perlite+peatmoss: achieved the highest rank for number of roots and root length. Peatmoss: obtained the greatest records for plant fresh weight and plant length.

CONTENTS

	Page
TITLE	Ι
ABSTRACT	II
ACKNOWLEDGMENT	III
LIST OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF PLATES	XI
LIST OF ABBREVIATIONS	Х
1.INTRODUCTION	1
2.REVIEW OF LITERATURE	8
2.1. Multiplication : BAP and Kin	8
2. 2. Agar substitutes	10
2.3. Vetrification or hyperhydricity	12
2.4. Rooting	12
2.5. Acclimatization	13
2.5.1. Peat moss	13
2.5.2. Perlite	14
2.5.3. Peat moss and perlite	15
3. MATERIALS AND METHODS	18
3.1. The first plant : Alocasia amazonica	18
3.1.1. Exp.1: Effect of cytokinin concentration and type on	
multiplication stage of Alocasia x amazonica	18
3.1.2. Exp.2: Effect of agar substitutes on multiplication stage of	
Alocasia x amazonica	18
3.1.3. Exp.3: Effect of auxin type and concentration on rooting of	

shoots of Alocasia x Amazonica	19
3.1.4. Exp.4:Effect of potting media on Acclimatization of	
Alocasia x Amazonica	19
3.2. The second plant: Epithelantha micromeris	19
3.2.1. Exp.5: seed germination	20
3.2.2. Exp.6:Effect of cytokinin type and concentration on multiplication	on
stage of Epithelantha micromeris	20
3.2.3. Exp.7:Effect of charcoal availability and agar concentration on	
vetrification stage of Epithelantha micromeris	20
3.2.4. Exp.8:Effect of auxin type and concentration on rooting of shoot	
of Epithelantha micromeris	21
3.2.5.Exp.9:Effect of potting media on acclimatization of <i>Epithelantha</i>	
micromeris	21
4. RESUTS	22
4.1. In vitro propagation of: Alocasia x amazonica	22
4.1.1.Exp.1: Effect of cytokinin concentration and type on multiplication	
stage of Alocasia x amazonica	22
4.1.1.1. On shoots number	22
4.1.1.2. On shoot length	23
4.1.1.3. On shoot fresh weight	24
4.1.1.4. On number of leaves	25
4.1.1.5. On number of roots	26
4.1.1.6. On total chlorophyll content	
4.1.2.Exp.2: Effect of Agar substitutes on multiplication stage of	
Alocasia x amazonica	28
4.1.2.1. On number of shoots	28
4.1.2.2. On shoot fresh weight (g)	29

4.1.2.3. On shoot length (cm)	30
4.1.2.4. On number of leaves	31
4.1.2.5. On number of roots	32
4.1.2.6. On root fresh weight (g)	33
4.1.2.7. On root length (cm)	34
4.1.3.Exp.3: Effect of auxin type and concentration on rooting of	
shoots of Alocasia×Amazonica	35
4.1.3.1. On number of shoots	35
4.1.3.2. On shoot fresh weight (g)	36
4.1.3.3. On shoot length (cm)	37
4.1.3.4. On number of leaves	38
4.1.3.5. On number of roots	39
4.1.3.6. On root fresh weight	40
4.1.3.7. On root length (cm)	41
4.1.3.8. On total chlorophyll content	42
4.1.4.Exp.4: Effect of potting media on Acclimatization of	
Alocasia×Amazonica	43
The Second plant: Epithelantha micromeris	44
4.2. In vitro Propagation of Epithelantha micromeris	44
4.2.1.Exp.5: Seed germination:	44
4.2.2. Exp.6:Effect of cytokinin type and concentration on multiplica	tion
stage of Epithelantha micromeris Multiplication.	44
4.2.2.1. On number of shoots	44
4.2.2.2. On shoot fresh weight (g)	45
4.2.2.3. On cluster fresh weight (g)	47
4.2.2.4. On shoot length (cm).	47
4.2.2.5. On number of roots	48

4.2.3.Exp.7:Effect of charcoal availability and agar concentration	
on vetrification stage of Epithelantha micromeris	49
4.2.3.1. On number of shoots	49
4.2.3.2. On shoot fresh weight (g).	50
4.2.3.3. On cluster fresh weight (g).	51
4.2.3.4. On shoot length (cm).	52
4.2.3.5. On vetrification%	53
4.2.3.6. On total chlorophyll content (mg/g fw)	54
4.2.4.Exp.8: Effect of auxin type and concentration on rooting of she	oot
of Epithelantha micromeris	55
4.2.4.1. On number of roots	55
4.2.4.2. On root length (cm).	56
4.2.4.3. On root fresh weight (g)	57
4.2.4.4. On shoot lenght (cm)	58
4.2.4.5. On shoot fresh weight (g).	59
4.2.5. Exp.9: Effect of potting media on acclimatization of	
Epithelantha micromeris	60
5. DISCUSSION	61
5.1. Effect of GA ₃ on Seed Germination	62
5.2. Multiplication: BA and Kintin	
5.2.1. On number of shoots	62
5.2.2. On shoot length	64
5.2.3. On number of shoots and shoot length	64
5.3. Comparison Between BA and Kinetin	65
5.3.1. On number of shoots, shoot length and number of leaves	65
5.3.2. On photothynthesis pigments	66
5.4. Agar Substitutes	66

5.4.1. Potatoes	67
5.5. Sugar Availability	68
5.6. Rooting	69
5.6.1. The role of IBA on rooting	69
5.6.2. The role of NAA on rooting	70
5.6.3. Comparison between IBA and NAA on rooting	71
5.6.4. Rooting on MS free medium	73
5.7. Vetrification or Hyperhydricity	73
5.7.1. Charcoal	73
5.8. Acclimatization	74
5.8.1. Peat moss	74
5.8.2. Peat moss and perlite	74
6. SUMMARY	77
7. CONCLUSION	86
8. REFERENCES	87
ARABIC SUMMARY	

LIST OF TABLES

Table No.	p	age
Table (1)	Effect of cytokinin type and concentration on	
	number of shoots of Alocasia x Amazonica	23
Table (2)	Effect of cytokinin type and concentration on shoot	
	length (cm) of Alocasia x amazonica	24
Table (3)	Effect of cytokinin type and concentration on shoot	
	fresh weight (g) of Alocasia x amazonica	25
Table (4)	Effect of cytokinin type and concentration on number	
	of leaves of Alocasia×Amazonica	26
Table (5)	Effect of cytokinin type and concentration on number	
	of roots of Alocasia×Amazonica	27
Table (6)	Effect of cytokinin type and concentration on total	
	chlorophyll content (mg/g f.w.) of Alocasia x Amazonica	a28
Table (7)	Effect of media substrate and sugar availability on numb	er
	of shoots of Alocasia×Amazonica	29
Table (8)	Effect of media substrate and sugar availability on shoo	t
	fresh weight (g) of Alocasia×Amazonica	30
Table (9)	Effect of media substrate and sugar availability on shoot	
	length (cm) of Alocasia×Amazonica	31
Table (10)	Effect of media substrate and sugar availability on numb	er
	of leaves of Alocasia×Amazonica	32
Table (11)	Effect of media substrate and sugar availability on numb	er
	of roots of Alocasia×Amazonica	33
Table (12)	Effect of media substrate and sugar availability on root	
	fresh weight (g) of Alocasia×Amazonica	34

Table (13)	Effect of media substrate and sugar availability on root	
	length (cm) of Alocasia×Amazonica	35
Table (14)	Effect of auxin type and concentration on number of	
	shoots of Alocasia×Amazonica	36
Table (15)	Effect of auxin type and concentration on shoot fresh	
	weight (g) of Alocasia×Amazonica	37
Table (16)	Effect of auxin type and concentration on shoot length	
	(cm) of Alocasia×Amazonica	38
Table (17)	Effect of auxin type and concentration on number of	
	leaves of Alocasia×Amazonica	39
Table (18)	Effect of auxin type and concentration on number of	
	roots of Alocasia×Amazonica	40
Table (19)	Effect of auxin type and concentration on root fresh	
	weight (g) of Alocasia×Amazonica	41
Table (20)	Effect of auxin type and concentration on root length	
	(cm) of <i>Alocasia</i> × <i>Amazonica</i>	42
Table (21)	Effect of auxin type and concentration on total	
	chlorophyll content (mg/g fw) of Alocasia×Amazonica	43
Table (22)	Effect of potting media on Alocasia×Amazonica	44
Table (23)	Effect of soaking seeds in GA ₃ at 1000 ppm for 20 min	
	on germination% of Epithelantha micromeris	44
Table (24)	Effect of cytokinin type and concentration on number	
	of shoots of Epithelantha micromeris	45
Table (25)	Effect of cytokinin type and concentration on shoot fresh	h
	weight(g) of Epithelantha micromeris	46
Table (26)	Effect of cytokinin type and concentration on cluster	
	fresh weight (g) of Epithelantha micromeris	47

Table (27)	Effect of cytokinin type and concentration on shoot	
	length (cm) of Epithelantha micromeris	48
Table (28)	Effect of cytokinin type and concentration on number	
	of roots of Epithelantha micromeris	49
Table (29)	Effect of charcoal availability and agar concentration	
	on number of shoots of Epithelantha micromeris	50
Table (30)	Effect of charcoal availability and agar concentration on	l
	shoot fresh weight (g) of Epithelantha micromeris	51
Table (31)	Effect of charcoal availability and agar concentration on	
	cluster fresh weight (g) of Epithelantha micromeris	52
Table (32)	Effect of charcoal availability and agar concentration on	
	shoot length (cm) of Epithelantha micromeres	53
Table (33)	Effect of charcoal availability and agar concentration on	
	vetrification% of Epithelantha micromeris	54
Table (34)	Effect of charcoal availability and agar concentration on	
	total chlorophyll content (mg/g fw) of Epithelantha	
	micromeris	55
Table (35)	Effect of auxin type and concentration on number of root	ts
	number of roots of Epithelantha micromeris	56
Table (36)	Effect of auxin type and concentration on root length	
	(cm) of Epithelantha micromeris	57
Table (37)	Effect of auxin type and concentration on root fresh	
	weight (g) of Epithelantha micromeris	58
Table (38)	Effect of auxin type and concentration on shoot length	
	(cm) of Epithelantha micromeris	59
Table (39)	Effect of auxin type and concentration on shoot fresh	
	weight (g) of Epithelantha micromeris	60

Table (40)	Effect of potting media of Epithelantha micromeris	60
-------------------	--	----

LIST OF PLATES

Plate No.		Page
Plate (1)	The First Plant: Alocasia amazonica	2
Plate (2)	The Second Plant: Epithelantha micromeris	٤