INJURIOUS FRUIT TREES MITES AND ITS CONTROL BY FUNGI

By

HALA FOUAD ALI AHMED EWIES

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Ain Shams Univ., 1998 H.S.Dip. (Organic Farming), CIHEAM-Bari, Italy, 2001 M.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 2008

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences
(Agricultural Zoology-Acarology)

Department of Zoology and Agricultural Nematology
Faculty of Agriculture
Cairo University
EGYPT

2021

Format reviewer

Vice dean of graduate studies

Name of Candidate: Hala Fouad Ali Ahmed Ewies Degree: Ph.D.

Title of Thesis: Injurious fruit trees mites and its control by fungi.

Supervisors: Dr. Mohamed Samy Nawar.

Dr. Mohamed Abd El-Aziz Zaher Dr. Magdi Mohmed Hussien Fawzy

Department: Zoology and Agricultural Nematology **Branch:** Acarology

Date: / / 2021

ABSTRACT

Plant mites are the most important pests of orchids in Egypt, especially the economic ones, which when infected with different types of mites lead to loss of their aesthetic and export value. And in view of the recent global trends to get rid of agricultural pests, in order to use natural enemies to reduce the use of harmful chemical pesticides in the control. The insect pathogenic fungi are considered an important vital factor in the control and not a recent one. Consequently, the study aims to use the insect pathogenic fungi to control the mites that infest some fruit trees in 7 different regions in Egypt.

An inventory of mites was carried out on different fruit trees at the governorates of Beheira, Giza, Qalyubia Gharbia, Ismailia, Dakahlia, and Faiyum. The entomopathogenic fungi of mites were isolated from the dead individuals (cadavers) and coded (H1 to H20). The study resulted in identifying 3 fungal species: *Moellerella sloaneae* isolate (H3), *Aschersonia abnormis* isolate (H6) and *Metarhizium anisopliae* isolate (H8). Whereas the *Moellerella sloaneae* fungus was first recorded in Egypt.

Through the study, some isolated fungi were purified and multiplied on different industrial environments, the intensity of growth was evaluated under incubation conditions and at room temperature, and the best environment for the best growth was shown for later use on a large scale. The severity of the infection, its efficacy, and its reproducibility were studied on the large wax worm (*Galleria mellonella*).

The use of isolates H3, H6, H8, and H15 in the study was applied in the laboratory using Metamet and Newfar and compared with Vertimec as chemical pesticide, and their effectiveness was estimated on 3 economic mites on fruit trees: *Tetranychus urticae*, *Eutetranychus orientalis*, and *Brevipalpus phoenicis*.

Also, the field was studied on 4 types of fruits in 4 different governorates using the bio-pesticides Metamet and Newfar compared to the chemical pesticide Vertimec.

This study was carried out to isolate pathogenic fungi from mites that infect economic fruit trees, purely from the Egyptian environment, to be commercially reproduced and used in biological control as an alternative to the use of harmful chemical pesticides.

Key words: Entomopathogenic fungi, plant mites, fruit trees, Egypt.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Occurrence of mites associated with some fruit tree	S
2. Biological control	
3. Entomopathogenic fungi isolation, identification an	
preservation	
4. Entomopathogenic fungi virulence	
5. Entomopathogenic fungi and mites	
MATERIALS AND METHODS	
1. Occurrence of injured Fruit trees mites	
1.1. Fruit trees mites surveyed locations	
1.2. Fruit tree mites collection and classification	
2. Isolation and identification of entomopathogenic fu	_
of injured fruit trees at three locations in Egypt	
2.1Entomopathogenic fungi isolation	
2.2. Entomopathogenic fungi purification and reservatio	
2.3. Entomopathogenic fungi identification	
3. Bioassay procedures	
3.1. <i>In – vitro</i> bioassay	
3.1.1. Entomopathogenic fungi four isolates prepara	
selected for testing fungal virulence (Pathogeni	city
tests)	
3.1.1.2. Greater wax moth (<i>Galleria</i>) rearing	
3.1.1.3. Virulence of selected fungal isolates against	
greater wax moth (Galleria) larvae	
3.1.2. Fungal growth measurements on different agar me	
3.1.3. Comparison of four entomopathogenic fungi selec	
isolates with commercial products on the	
phytophagous fruit trees mites	
3.2. <i>In</i> – <i>vivo</i> bioassay	
3.2.1.Application of entomopathogenic fungi on date p	
trees	

CONTENTS (Continued)

3.2.2.Application of entomopathogenic fungi on citrus'
trees
3.2.3.Application of entomopathogenic fungi on Guava's trees
3.2.4.Application of entomopathogenic fungi on Grapevines
. Statistical analysis
RESULTS AND DISCUSSION
. Occurrence and classification of injured fruit trees
mites and surveyed locations
1.1 Occurrence of phytophagous mites associated with fruit-
trees at surveyed locations
1.2 Classification of phytophagous and predacious mites
associated with fruit-trees at surveyed locations
2. Isolation and identification of entomopathogenic
fungi from mite's cadavers on injured fruit trees at
different locations in Egypt
2.1. Isolation of entomopathogenic fungi from mite's
cadavers on injured fruit trees at different locations in
Egypt
2.2. Entomopathogenic fungi Purification and reservation
2.3. Entomopathogenic Fungi Identification
3. Bioassay procedures
3.1. <i>In –vitro</i> bioassay
3.1.1. Entomopathogenic fungi selected four isolates
preparation for testing selected fungal virulence
(Pathogenicity tests)
3.1.1.1. Preparation of isolates inoculum
3.1.1.2. Purification and reproduce of chosen fungal
isolates
3.1.1.3. The greater wax moth (<i>Galleria</i>) rearing
3.1.1.4. Virulence of selected fungal isolates against the
greater wax moth (Galleria) larvae

CONTENTS (Continued)

3.1.1.5. Purification and reproduce the 4 isolates on suitable media with suitable techniques
3.1.2. Fungal growth measurements on different agar media
3.1.3. Comparison of Entomopathogenic fungi four selected isolates with commercial products on three phytophagous fruit trees mites.3. 2. <i>In – vivo</i> bioassay.
3.2.1. Application of entomopathogenic fungi on palm trees
3.2.2. Application of entomopathogenic fungi on citrus' trees
3.2.3. Application of entomopathogenic fungi on Guava's trees
3.2.4. Application of entomopathogenic fungi on Grapevines
SUMMARY
REFERENCE
ARABIC SUMMARY

LIST OF TABLES

No.	Table	Page
1.	Governorates/Orchards inspected during season; 2014-	
	2018	30
2.	Described media substrates code, name, and temperature	
	used in growth estimation experiment	38
3.	Treatments and its application rates	41
4.	Occurrence of phytophagous mite species associated	
	with fruit-trees at Gharbia governorate	44
5.	Occurrence of phytophagous mite species associated	
	with fruit-trees at Ismailia governorate	45
6.	Occurrence of phytophagous mite species associated	
	with fruit-trees at Beheira governorate	45
7.	Occurrence of phytophagous mite species associated	
	with fruit-trees at Giza governorate	46
8.	Occurrence of phytophagous mite species associated	
_	with fruit-trees at Dakahlia governorate	46
9.	Occurrence of phytophagous mite species associated	
	with fruit-trees at Fayoum governorate	47
10.	Occurrence of phytophagous mite species associated	
	with fruit-trees at Qalyubia governorate	47
11.	Classification of phytophagous and predacious mites	40
10	associated with fruit-trees at Gharbia governorate	49
12.	Classification of phytophagous and predacious mites	= 0
10	associated with fruit-trees at Ismailia governorate	50
13.	Classification of phytophagous and predacious mites	= 1
1.1	associated with fruit-trees at Beheira governorate	51
14.	Classification of phytophagous and predacious mites	<i>5</i> 2
15	associated with fruit-trees at Giza governorate	52
15.	Classification of phytophagous and predacious mites	5 2
16	associated with fruit-trees at Dakahlia governorate	53
16.	Classification of phytophagous and predacious mites	51
17.	associated with fruit-trees at Fayoum governorate	54
1/.	Classification of phytophagous and predacious mites	<i>E E</i>
18.	associated with fruit-trees at Qalyubia governorate	55
10.	Isolation of entomopathogenic fungi associated with fruit-trees mites at Gharbia governorate	57
	Truit-itees filites at Offatola governorate	31

LIST OF TABLES (Continued)

No.	Table	Page
19.	Isolation of entomopathogenic fungi associated with	
	fruit-trees mites at Ismailia governorate	57
20.	Isolation of entomopathogenic fungi associated with	
	fruit-trees mites at Beheira governorate	58
21.	Isolation of entomopathogenic fungi associated with	
	fruit-trees mites at Giza governorate	59
22.	Isolation of entomopathogenic fungi associated with	
	fruit-trees mites at Dakahlia governorate	59
23.	Isolation of entomopathogenic fungi associated with	
	fruit-trees mites at Fayoum governorate	60
24.	Isolation of entomopathogenic fungi associated with	
	fruit-trees mites at Qalyubia governorate	60
25.	Media used for reproduce selected isolates	67
26.	Fungal growth average measurements (mm) on different	
	dextrose agar media under room temp. after 1 day	69
27.	Fungal growth average measurements (mm) on different	
	Dextrose Agar media under room temp. after 3 days	69
28.	Fungal growth average measurements (mm) on different	
	dextrose agar media under room temp. after 7 days:	70
29.	Fungal growth average measurements (mm) on different	
	dextrose agar media under incubator temp. after 1 day	71
30.	Fungal growth average measurements (mm) on different	
	dextrose agar media under incubator temp. after 3 days	72
31.	Fungal growth average measurements (mm) on different	
	dextrose agar media under incubator temp. after 7 days	72
32.	Fungal growth average measurements (mm) on different	
22	dextrose agar media under incubator temp. after 14 days.	73
33.	Efficacy (%) of different treatments on Tetranychus	
24	urticae in-vitro	75
34.	Efficacy (%) of different treatments on <i>Eutetranychus</i>	-
25	orientalis in-vitro	76
35.	Efficacy (%) of different treatments on Brevipalpus	70
26	phoenicis in-vitro	78
36.	Average percentage of survival Oligonychus afrasiaticus	02
	on palm trees after treatment	82

LIST OF TABLES (Continued)

No.	Table
37.	Reduction of individuals <i>Oligonychus afrasiaticus</i> on palm trees after treatment
38.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested citrus's leaves pre-treatments at Qalyubia governorate
39.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested citrus's leaves after 7 days of treatments at Qalyubia governorate
40.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested citrus's leaves after 14 days of treatments at Qalyubia governorate
41.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested citrus's leaves after 21 days of treatments at Qalyubia governorate
42.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested citrus's fruits pre-treatments at Qalyubia
43.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested citrus's fruits after 7 days of treatments at
44.	Qalyubia governorate
45.	Survival percentage of <i>Brevipalpus phoenicis</i> mite infested Guava's leaves Pre-treatments at Qalyubia governorate
46.	Guava's leaves infested with Brevipalpus phoenicis after
47.	7days of treatments at Qalyubia governorate
48.	Guava's leaves infested with <i>Brevipalpus phoenicis</i> after 21 days of treatments at Qalyubia governorate
49.	Pre -treatments of grapevines infested with <i>Brevipalpus californicus</i> at Gharbia governorate

LIST OF TABLES (Continued)

No.	Table	Page
50.	Treatments of grapevines infested with Brevipalpus	
	californicus at Gharbia governorate after 7 days	94
51.	Treatments of grapevines infested with Brevipalpus	
	californicus at Gharbia governorate after 14 days	95
52.	Treatments of grapevines infested with Brevipalpus	
	californicus at Gharbia governorate after 21 days	95

LIST OF FIGURES

No.	Figure	Page
1.	Numbers of Samples and collected mites species isolated	
	from different locations in Egypt	48
2.	Purification and reservation of mites associated with fruit-	
	trees from economical fruit trees	61
3.	Identification of four entomopathogenic fungi isolated from	
	mites associated with from economical fruit trees.	62
4.	Identification of chosen fungal isolate (H3 = Moellerella	
	sloaneae & Synonymy: Hypocrella sloaneae)	62
5.	Identification of chosen fungal isolate (H6 = $Aschersonia$	
	abnormis)	63
6.	Identification of chosen fungal isolates (H8 = <i>Metarhizium</i>	
_	anisopliae)	63
7.	Fungal growth on different agar media for selected	
	isolates	64
8.	The greater wax moth (Galleria) different stages on old	
•	wax media (old valuables dry honey comb)	65
9.	The greater wax moth (Galleria) larva's stages infested	
10	with selected entomopathogenic fungal isolates	66
10.	Some Fungal growth measurements on different agar	
11	media for selected isolates	68
11.	Entomopathogenic fungi four selected isolates via	
12	commercial products used in experiments	74
12.	Sever infestation with <i>O. afrasiaticus</i> before and after	80
12	application	
13.		
1/	application	81
14.	Treatment of Citrus trees infested with <i>Brevipalpus</i> phoenicis mite at Kaha station, Qalyubia governorate,	
		84
	Egypt	04