

Zagazig University Faculty of Science Chemistry Department

SYNTHESIS AND EVALUATION OF SOME HETEROCYCLIC COMPOUNDS AS LAND SNAIL CONTROL AGENTS

BY

HEND MOHAMMED AHMED MAAROOF

B. Sc. Special Chemistry Faculty of Science, Zagazig University

A thesis submitted in partial fulfillment

Of

the requirements for the degree of

MASTER OF SCIENCE

In

(Organic Chemistry) Department of chemistry Faculty of Science Zagazig University

2017

Abstract

Land snails are one of the most destructive agricultural pests causing economic damage on agricultural and horticultural crops. In recent years, in Egypt, two species of land snails; Eobania vermiculata and Monacha cartusiana have been increasing rapidly and infected the majority of field crops and causing heavy damage. 2-Hydroyliminouridine derivatives 14 &15 were synthesized by glycosylation of silvlated 2-thiouracil with 1-O-acetyl-2,3,5-tri-O-benzoyl-Dribose under Vorbruggen glycosylation conditions to furnish 2,3,5-tri-O-benzoyl-2thiouridine. Alkylation of the later compound should furnish 2-methylthiouridine which was reacted with hydroxylamine hydrochloride in dry pyridine then deprotected under conventional condition to give 2-hydroyliminouridine. The later compound treated with TBDMSCl then Lawesson's reagent followed by TBAF to furnish 2-Hydroxylimino-4-thiouridine. Stereochemistry of 2-hydroyliminouridine derivatives 14 &15 were studied using DFT. A series of 4-substituted pyrazolones were synthesized. Pyrazolone (8) was chlorinated and brominated to the corresponding 4-dichloro and dibromopyrazolones derivatives (9), and (10). Nitrozation of 8 afforded the 4-hydroxylimino derivative 11. Reaction of 8 with the diazonium salt generated from 4-nitroaniline provided the diazo derivative 12. The structures of synthesized compounds were determined by ¹H-NMR, ¹³C-NMR, UV and IR spectroscopy. Four concentrations (1, 1.5, 2, and 2.5%) of compounds (8, A), (9, B), (10, C), (11, D), and (12, E) were evaluated against adults of two land snails species; Eobania vermiculata and Monacha cartusiana under laboratory conditions. Compound B exhibited the highest toxic effect against E. vermiculata followed by compound E, compound D, and compound C, respectively. While the parent compound (A) had no effect at all. Compound B showed the highest toxic effect against M. cartusiana followed by compound C, compound E, and compound D, respectively. While the parent compound (A) showed the least activity. The LC₅₀ and LC₉₀ values for compounds B, E, D, and C against *E. vermiculata* were determined. Compound B (LC₅₀ 11.26 g/L, LC₉₀ 24.54 g/L), compounds E (LC₅₀ 11.60 g/L, LC₉₀ 24.27 g/L), compound D (LC₅₀ 12.38 g/L, LC₉₀ 23.56 g/L), and compound C (LC₅₀ 27.14 g/L, LC₉₀ 132.00 g/L). The LC₅₀ and LC₉₀ values of compounds B, C, E, and D against *M. cartusiana* were determined, compound B (LC₅₀ 4.41 g/L, LC₉₀ 13.58 g/L), compound C (LC₅₀ 6.71 g/L, LC₉₀ 17.46 g/L), compounds E (LC₅₀ 8.76 g/L, LC₉₀ 18.48 g/L), and compound D (LC₅₀ 10.60 g/L, LC₉₀ 19.25). The LC₅₀ values of compounds I0-12 were evaluated against *Monacha species* under field conditions.

CONTENTS

	Page
INTRODUCTION	1
RESULTS AND DISCUSSION	6
2.1. Synthesis and Density Functional Theory (DFT) Minimizations	of 2-
Hydroyliminouridine Nucleosides	6
2.1.1. Synthesis of 2-Hydroxyliminouridine	9
 2.1.1.1. Synthesis of 1-<i>O</i>-acetyl-2,3,5-tri-<i>O</i>-benzoyl-β-D-ribose 2.1.1.2 Coupling of Silylated 2-thiouracil with Sugar 	10 11
2.1.1.3 Alkylation of 2-thiouridine	13
2.1.1.4 Introduction of hydroxylimino moiety at the 2-position	14
2.1.1.5 Density Functional Theory (DFT) minimizations	17
2.1.1.6 Synthesis of N3- methyl uridine nucleosides	21
2.1.1.7 Synthesis of 2-hydroxylimino-4-thiouridine derivatives	22
2.2. Synthesis of 4-substituted 3-methylpyrazolone derivatives	24
MARETIALS AND METHODS BIOLOGICAL ACTIVITY	27
I-Review of literature	38
II-Materials and Methods	48
III-Result IV-Discussion	56 66
SUMMARY	70
SPECTRAL ANALYSIS	73
REFERENCES	128
ARABIC SUMMARY	

LIST OF TABLES

Title of Table	Page
TABLE 1: Effect of compounds A-E against <i>E. vermiculata</i> snails	57
TABLE 2: Effect of compounds A-E against <i>M. cartusiana</i> snails	58
TABLE 3: Toxicity of compounds (B-E) against <i>E. vermiculata</i> snails	61
TABLE 4: Toxicity of compounds (B-E) against <i>M. cartusiana</i> snails	61
TABLE 5: Effect of LC ₅₀ of compounds B-E against Monacha species	
Under field conditions	64

LIST OF FIGURES

Title of FigurePage
Fig. 1: Structures of some biologically active pyrazole derivatives2
Fig. 2: Structures of pesticides derived pyrazoles
Fig. 3: Structures of some pyrazolones derivatives as potential molluscicidal
agents4
Fig. 4: Structures of N-hydroxyl nucleosides5
Fig. 5: Tautomeric equilibrium between the N-hydroxycytidine and 4-
hydroxyl-iminouridine7
Fig. 6: Base paring between 4-hydroxyliminouridine (U ^{HI}) with adenosine
(A) and N-hydroxycytidine (C ^H) with Guanosine (G)7
Fig. 7: Retrosynthesis of the target compounds9
Fig. 8: Mechanism of Vorbruggen glycosylation12
Fig. 9: Chemical shifts of the anomeric protons of compounds, 22, 23, and
24 . ¹ H-NMR measured in (CDCl ₃) 12
Fig. 10: Uv-Vis spectra of compounds 2- thiouridine derivative 22 (red)
and 2-methylthio derivative 23 (blue)13
Fig. 11: Uv-Vis spectra of compounds 2- thiouridine derivative 5 (red), 2-
methylthio derivative 6 (blue) and 2- hydroxyimino derivative 8
(black)
Fig. 12: Segment of ¹ H-NMR spectrum of compound 8
Fig. 13: : Uv-Vis spectra of compounds 2-hydroxyliminouridine 9 (red) and
uridine (black) in MeOH16
Fig. 14: Possible conformers of 2-hydoxylimino/aminouridine 17
Fig. 15: Energy minimization of the isomer I using DFT in gas phase18

Fig.	16:	Energy minimization of the isomer II using DFT in gas phase18
Fig.	17:	Energy minimization of the isomer III using DFT in gas phase19
Fig.	18:	Energy minimization and tautomer No. 1 of the trans-isomer, I using
		DFT in H2O19
Fig.	19:	Energy minimization and tautomer No. 3 of the trans-isomer, I using
		DFT in H ₂ O 20
Fig.	20:	Energy minimization and tautomer No. 3 of the trans-isomer, I
		DFT in H ₂ O
Fig.	21:	Structures of some N-3 modified nucleosides with biological
		activites21
Fig.	22:	Tautomers of 3-methylpyrazol-5-one25
Fig.	23:	4-hydroxylimino-3-methylpyrazolone structures
Fig.	24:	Effect of the compounds (A-E) concentrations on E. vermiculata
		snails at different periods (days)
Fig.	25:	Effect of the compounds (A-E) concentrations on M. cartusiana
		snails at different periods (days)59
Fig.	26:	Toxic effect of compounds (B-D) against <i>E. vermiculata</i> snails62
Fig.	27:	Toxic effect of compounds (B-D) against <i>M. cartusiana</i> snails62
Fig.	28:	Reduction percentage of LC50 of compounds B-E against Monacha
		<i>species</i> under field conditions65
Fig.	29:	¹ H NMR spectrum of compound 8 (DMSO-d ₆) 73
Fig.	30:	¹³ C NMR spectrum of compound 8 (DMSO- d_6) 73
Fig.	31:	IR spectrum of compound 874
Fig.	32:	¹ H NMR spectrum of compound 9 (DMSO- d_6) 74
Fig.	33:	¹ H NMR spectrum of compound 9 (DMSO- d_6/D_2O) 75

Fig. 34: ¹³ C NMR spectrum of compound 9 (CDCl ₃)	75
Fig. 35: IR spectrum of compound 9	76
Fig. 36: ¹ H NMR spectrum of compound 10 (DMSO-d ₆)	76
Fig.37: ¹ H NMR spectrum of compound 10 (DMSO-d ₆ / D ₂ O)	77
Fig.38: ¹³ CNMR spectrum of compound 10 (DMSO-d ₆)	77
Fig. 39: IR spectrum of compound 10	78
Fig. 40: ¹ H NMR spectrum of compound 11 (DMSO-d ₆)	78
Fig.41: ¹³ C NMR spectrum of compound 11 (DMSO-d ₆)	79
Fig. 42: IR spectrum of compound 11	
Fig. 43: ¹ H NMR spectrum of compound 12 (DMSO-d ₆)	80
Fig. 44: ¹ H NMR spectrum of compound 12 (DMSO- d_6/D_2O)	80
Fig.45: ¹³ CNMR spectrum of compound 12 (DMSO-d ₆)	81
Fig. 46: IR spectrum of compound 12	81
Fig. 47: ¹ H NMR spectrum of compound 19 (CDCl ₃)	82
Fig. 48: ¹³ C NMR spectrum of compound 19 (CDCl ₃)	82
Fig. 49: IR spectrum of compound 19	83
Fig. 50: ¹ H NMR spectrum of compound 22 (CDCl ₃)	83
Fig. 51: ¹³ C NMR spectrum of compound 22 (CDCl ₃)	84
Fig. 52: IR spectrum of compound 22	84
Fig. 53: ¹ H NMR spectrum of compound 23 (CDCl ₃)	85
Fig. 54: ¹³ C NMR spectrum of compound 23 (CDCl ₃)	85
Fig. 55: IR spectrum of compound 23	86
Fig. 56: ¹ H NMR spectrum of compound 24 (CDCl ₃)	86
Fig. 57: ¹³ C NMR spectrum of compound 24 (CDCl ₃)	
Fig. 58: IR spectrum of compound 24	87

Fig. 59: ¹ H NMR spectrum of compound 26 (DMSO-d ₆)	88
Fig. 60: ¹³ C NMR spectrum of compound 26 (DMSO-d ₆)	
Fig. 61: IR spectrum of compound 26	89
Fig. 62: ¹ H NMR spectrum of compound 27 (CDCl ₃)	89
Fig. 63: ¹³ C NMR spectrum of compound 27 (CDCl ₃)	90
Fig. 64: IR spectrum of compound 27	90
Fig. 65: ¹ H NMR spectrum of compound 28 (DMSO-d ₆)	
Fig. 66: ¹³ C NMR spectrum of compound 28 (DMSO-d ₆)	91
Fig. 67: IR spectrum of compound 28	92
Fig. 68: ¹ H NMR spectrum of compound 25 (DMSO-d ₆)	92
Fig. 69: ¹ H NMR spectrum of compound 25 (DMSO- d_6/D_2O)	93
Fig. 70: ¹³ C NMR spectrum of compound 25 (DMSO-d ₆)	
Fig. 71: IR spectrum of compound 25	94
Fig. 72: ¹ H NMR spectrum of compound 14 (DMSO-d ₆)	94
Fig. 73: ¹ H NMR spectrum of compound 14 (DMSO-d ₆ / D ₂ O)	
Fig. 74: ¹³ C NMR spectrum of compound 14 (DMSO-d ₆)	 95
Fig. 75: IR spectrum of compound 14	96
Fig. 76: ¹ H NMR spectrum of compound 29 (CDCl ₃)	96
Fig. 77: ¹³ C NMR spectrum of compound 29 (CDCl ₃)	97
Fig. 78: ¹ H NMR spectrum of compound 30 (CDCl ₃)	97
Fig. 79: ¹³ C NMR spectrum of compound 30 (CDCl ₃)	98
Fig. 80: ¹ H NMR spectrum of compound 15 (DMSO-d ₆)	
Fig.81: ¹ H NMR spectrum of compound 15 (DMSO-d ₆ / D ₂ O)	99
Fig. 82: ¹³ C NMR spectrum of compound 15 (DMSO-d ₆)	99
Fig.83: IR spectrum of compound 15	100