Banha University Faculty of Sciences Department of Chemistry

Some Persistent Organic Pollutants Levels in Mothers Milk and their Correlation with Different Sources of Environment and Food in Egypt

Submitted By RAMY HUSSIEN ABD EL-KHALIK MSc. Chemistry, Banha University, 2014

THESIS Submitted In Partial fulfilment of The Requirement for the Degree of DOCTOR OF PHILOSOPHY

In Analytical Chemistry

Under the Supervision of:

Prof. Dr. Mostafa Ebrahiem Mostafa

Professor of Analytical Chemistry, Faculty of Sciences, Banha University.

Prof. Dr. Gamal Owes El-Sayed

Professor of Analytical Chemistry, Faculty of Sciences, Banha University.

Prof. Dr. Ashraf Sami Hassanin

Chief Researcher, Central Laboratory of Residue Analysis of Pesticides & Heavy Metals in Food, Agricultural Research Center.

LIST OF CONTENTS

Heading number	Item Name	Page
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	6
2.1	Sources of (POPs)	6
2.1.1	Sources of (POPs) in Environment	6
2.1.2	Sources of (POPs) in Human body	9
2.1.3	Transportation of Dioxins and dl-PCBs to Infants	10
2.1.4	Health effects of Persistent Organic Pollutants (POPs) in Humans	12
2.1.5	Dioxins and dl-PCBs Method of Analysis	15
2.1.6	Dioxins and dl-PCBs Monitoring in Breast milk	21
3	MATERIALS AND METHODS	40
3.1	Samples Collection	40
3.2	Chemicals, Reagents and Standard solutions	41
3.2.1	Chemicals	41
3.2.2	Reagents Preparation	42
3.2.3	Standards Solutions	42
3.2.3.1	Labeled-compounds Solution (LCS)	43
3.2.3.2	Labeled Internal Standard Solution (ISS)	44
3.2.3.3	Precision and Recovery (PAR) Solution	45
3.2.3.4	Calibration Standard Solution (CSS)	46
3.3	Instruments used in sample analysis	53
3.4	Instruments used for Dioxins and dl-PCBs identification	53
3.4.1	Gas Chromatography (GC)	54
3.4.2	High Resolution Mass Spectrometry (HRMS)	54
3.5	Dioxins and dl-PCBs analytical Method	55
3.5.1	The extraction of samples	55

3.5.2	The clean-up of samples	56
3.5.2.1	Acidification Process	56
3.5.2.2	Silica Column	56
3.5.2.3	Alumina Column	56
3.5.2.4	Carbon Column	57
3.6	Calculation of PCDD/Fs and dl-PCBs concentrations in samples	58
3.7	Dioxins and dl-PCBs method Validation	59
3.7.1	Initial Precision and Recovery (IPR) (Repeatability)	59
3.7.2	Ongoing Precision and Recovery (OPR) (Reproducibility)	59
3.8	Quality Assurance and quality control of method (QA/QC)	60
3.8.1	Internal quality control program (IQC)	61
3.8.1.1	Blank	61
3.8.1.2	Ongoing precision and recovery (OPR)	61
3.9	External quality control- Proficiency Test (Proficiency Test)	61
3.9.1	Proficiency Tests (PTs)	61
4	RESULTS AND DISCUSSION	63
4.1	Quality Control/Quality Assurance of PCDD/Fs and dl-PCBs Method	63
4.1.1	Repeatability	63
4.1.2	Reproducibility	66
4.1.3	Certified Reference Material (CRM) Sample	69
4.2	Levels of dioxins in collected breast milk samples	71
4.2.1	Levels of dioxins (PCDD/Fs) concentration (without TEF)	71
4.2.2	Levels of dioxins (PCDD/Fs) as TEQ concentration (TEF)	78
4.3	Levels of dioxin like PCBs (dl-PCBs) in collected breast milk samples.	88
4.3.1	Levels of dl-PCBs (without TEF)	88
4.3.2	Levels of dl-PCBs (with TEF)	95
4.4	Levels of dioxins (PCDD/Fs) and dioxin like PCBs (dl-	107

	PCBs) in the collected breast milk samples.	
4.4.1	Levels of PCDD/Fs and dl-PCBs (without TEF).	107
4.4.2	Levels of PCDD/Fs and dl-PCBs (TEF).	112
4.5	Estimating daily intake (EDI) of PCDD/Fs and dl-PCBs for infants.	119
4.6	An explanation of the above results	127
4.6.1	The industrial activities	128
4.6.2	The non-industrial activities	129
4.7	Comparison of congener profile for breast milk samples and foodstuffs	131
5	CONCLUSION	134
6	SUMMARY	136
7	REFERENCES	143

LIST OF TABLES

Table number	Item Name	Page
1	Identification and Characteristics of milk donors.	41
2	Labeled Compounds Concentration of Stock PCDD/Fs and PCBs.	44
3	Internal Compounds Concentration of Stock PCDD/Fs and PCBs.	45
4	Native Compounds Concentration of Stock PCDD/Fs and PCBs.	46
5a	Concentration of PCDDs/PCDFs in calibration and verification Standard Solutions.	47
5b	Concentration of PCBs in calibration and verification standard solutions.	48
6	Toxic equivalency factor (TEFs) for PCDDs, PCDFs and dl- PCBs recommended by the World Health Organization.	51
7	Typical physico-chemical properties of PCDDs, PCDFs and dl-PCBs.	52
8	The proficiency tests (PTs), Z-Scores of dioxins and dioxin like PCBs in different samples.	62
9	The repeatability of dioxins (PCDD/Fs) for two levels in milk samples.	64
10	The repeatability of dioxins like PCBs (dl-PCBs) for two levels in milk samples.	65
11	The reproducibility of dioxins (PCDD/Fs) for two levels in milk samples.	67
12	The reproducibility of dioxins like PCBs (dl-PCBs) for two levels in milk samples.	68
13	The CRM Z-Scores of dioxins (PCDD/Fs) in fish oil sample.	69
14	The CRM Z-Scores of dioxins like PCBs (dl-PCBs) in fish oil sample.	70
15	The mean recovery values, minimum, maximum and standard deviation (SD± of the C13-PCDD/Fs in analyzed samples.	72

Table number	Item Name	Page
16	The mean, median concentrations and standard deviation SD (\pm) of dioxins in breast milk samples in pg/g fat.	77
17	The mean, median concentrations and standard deviation SD (\pm) of dioxins in breast milk samples in pgTEQ/g fat.	82
18	Concentration of PCDD/Fs in pgTEQ/g fat of each age group.	85
19	Summary of some recent studies on PCDD/Fs concentrations in breast milk of women from different countries.	87
20	The mean recovery values, minimum, maximum and standard deviation (SD \pm of the C13-dlPCBs in analyzed samples.	88
21	The mean, median concentrations and standard deviation SD (\pm) of dl-PCBs in breast milk samples in pg/g fat.	94
22	The mean, median concentrations and standard deviation SD (\pm) of dl-PCBs in breast milk samples in pgTEQ/g fat.	102
23	Concentration of dl-PCBs in pg TEQ/g fat of each age group.	103
24	Summary of some recent studies on dl-PCBs concentrations in breast milk of women from different countries.	106
25	The mean, minimum, maximum and standard deviation $(SD\pm)$ total concentrations of PCDD/Fs and dl-PCBs in pg/g fat.	107
26	The mean, minimum, maximum and standard deviation (SD \pm) total concentrations of PCDD/Fs and dl-PCBs in pg TEQ/g fat.	113
27	Summary of some recent studies on PCDD/Fs and dl-PCBs concentrations in breast milk of women from different countries.	118
28	The estimated daily intake of PCDD/Fs and PCBs expressed in pg TEQ $kg^{-1}bw day^{-1}$	121
29	Summary results of a series of recent reports (2012–2019) on total daily intake of PCDD/Fs and dl-PCBs levels in human milk from different countries.	126

LIST OF FIGURES

Figure number	Item Name	Page
1	The chemical structures of the parent substances (polychlorinated dibenzo- <i>p</i> -dioxins and polychlorinated dibenzofurans). The structures of 2,3,7,8 TCDD and 2,3,7,8 TCDF are given as an example of the parent substances	49
2	The chemical structures of the parent substances polychlorinated biphenyls (PCBs) (A). The structure, formulas and PCBs numbers of: (B) non-ortho PCBs; (C) mono-ortho PCBs are given as an example of the parent substances	50
3	Recovery efficiency of PCDD/Fs labeled standards in analyzed samples.	73
4	The percentage of PCDDs and PCDFs to the total 17 PCDD/PCDFs in pg/g fat.	74
5	Pattern percentage of individual congener of PCDD/Fs in pg/g fat.	75
6	Congener profile of Dioxins (PCDD/Fs) in pg/g fat weight.	78
7	The contribution percentage of 7 PCDDs and 10 PCDFs to the total 17 PCDD/PCDFs in pg TEQ/g fat.	79
8	The contribution percentage of individual congener of PCDD/Fs in pgTEQ/g fat.	80
9	Congener profile of Dioxins (PCDD/Fs) in breast milk samples in pgTEQ/g fat.	83
10	The contribution of individual congeners of PCDD/Fs in collected samples in pg/g fat and in pgTEQ/g fat.	84
11	Effect of age and number of deliveries on PCDD/Fs levels (pg WHO TEQ/g fat).	86
12	The contribution percentage of non-ortho and mono-ortho dl-PCBs to the total concentration of dl-PCBs without TEF.	90
13	The contribution percentage of non-ortho and mono-ortho dl-PCBs to the total concentration of dl-PCBs without TEF.	91
14	The highest four congener's contribution to the total dl-PCBs	92

concentration without TEF.

Figure number	Item Name	Page
15	The pattern of dl-PCBs concentrations in pg/g fat in collected human milk samples.	95
16	The contribution percentage of individual congeners of dl- PCBs in collected samples in pgTEQ/g fat.	97
17	The percentage of mono-ortho dl-PCB and non-ortho dl-PCB to the total dl-PCBs in collected samples in pgTEQ/g fat.	98
18	The highest four congener's contribution to the \sum TEQ of dl-PCBs concentration in collected samples.	99
19	The contribution percentage of individual dl-PCBs congeners in pg/g fat and in pgTEQ/g fat in collected samples.	100
20	The pattern of average concentrations in pgTEQ/g fat of dl- PCBs congeners in collected human milk samples.	103
21	Effect of age and number of deliveries on dl-PCBs levels (pgWHO-TEQ/g fat).	105
22	PCDD/Fs and dl-PCBs contribution to the total concentration (without TEF).	108
23	PCDDs, PCDFs, mono-ortho PCBs and non-ortho PCBs contribution to the total concentration.	110
24a	Contribution of the highest congeners to the total concentration.	111
24b	Contribution of the highest congeners of dl-PCBs to the total concentration.	111
25	PCDD/Fs and dl-PCBs contribution to the total TEQ concentration (\sum TEQ).	114
26	PCDD, PCDF, mono-ortho PCBs and non-ortho PCBs contribution to the $\sum TEQ$.	115
27	Contribution of the highest four congeners to the $\sum TEQ$.	117
28	The PCDD/Fs and PCBs contribution to the total daily intake (TDI).	123

29 The most contributed congeners to the total daily intake (TDI). 124

Figure number	Item Name	Page
30	Comparison of the contribution percentage of individual congeners of dl-PCBs in various matrices in pg/g fat	132
31	Comparison of the contribution percentage of individual congeners of PCDD/Fs in various matrices in pg/g fat	133

6. SUMMARY

In our investigated study, forty-eight (48) breast milk samples collected from the period of 2016 to 2018 from Qalyubia governorate, Egypt. All the participants provided an informed consent and asked to complete a questionnaire concerning some available information data like mother age, baby age and number of deliveries.

Samples were analyzed in the Central laboratory of Residue Analysis of Pesticides, Agricultural Research Center (QCAP-Egypt) which was accredited by the Finnish Accreditation Services (FINAS) according to the requirements of International Organization for Standardization (ISO/IEC) 17025 (2005). Additionally, the method performance used was assessed through successfully participation in specific inter laboratory studies organized by European Union Reference Laboratory for Dioxins and PCBs.

Characteristics of the study participants

The average age of participating women was 27 years old and ranged from 20 to 35 years. The mean lipid percentage of the forty-eight (48) breast milk samples was 3.2g and ranged between (0.6 to 7.9 g).

6.1 Levels of PCDD/Fs and dl-PCBs without TEF in collected breast milk samples.

The recovery of all standards is within the required range, which is in accordance with the requirements of the EPA 1613 and 1668 method. All the 29 congeners of PCDD/Fs and dl-PCBs were detected in all samples even the most toxic congener TCDD and PCB-126.

The mean summation of PCDD/Fs + dl-PCBs (Σ PCDD/Fs+dl-PCBs) was 9290.32 pg/g fat ranged between of 1878.39 to 43477.7 pg/g lipid. The

dl-PCBs accounted of 99.33%, while PCDD/Fs accounted of 0.67 % from Σ PCDD/Fs+dl-PCBs. As pattern, the most abundant congeners was mono-ortho PCBs in which accounted of 98.07 %, non-ortho PCBs accounted of 1.26 %, followed by PCDDs accounted of 0.37 % and PCDFs accounted of 0.3 % from Σ PCDD/Fs+dl-PCBs.

The mean summation of 17 PCDD/Fs was 62.19 pg/g fat ranged between of 17.41 to 179.77 pg/g fat. The concentrations of individual congeners ranged from 0.03 pg/g fat for 1,2,3,7,8,9-HxCDF (the lowest concentration) to 52.38 pg/g fat for 1,2,3,4,6,7,8,9-OCDD (the highest concentration).

 \sum PCDF concentrations accounted of 44.8%, while \sum PCDD concentrations accounted of 55.2% from the total PCDD/Fs concentration. OCDD was the predominant congener in all breast milk samples with a mean concentration of 24.93 ranging between of 15.4 to 52.38 pg/g fat and represent a mean contribution percentage of 40.08 % from \sum PCDD/Fs followed by 2,3,4,7,8-PeCDF (21.92%).

The mean summation of 12 dl-PCBs was 9228.13 pg/g fat ranged between of 1789.54 to 43359.75 pg/g fat. The concentrations of individual congeners ranged from 1.8 pg/g fat for PCB 81 (the lowest concentration) to 17893.76 pg/g fat for PCB 118 (the highest concentration).

 \sum non-ortho dl-PCB concentrations accounted of 1.26%, while the \sum mono-ortho dl-PCB concentrations accounted of 98.74% from the total PCBs concentration.

PCB 118 was the predominant congener in all samples with a mean percentage contribution of 43.58% with a concentration range between 701.09 to 17893.76 pg/g fat from Σ PCBs, followed by PCB 156 (20.95%), PCB 105 (13.86%) and PCB 167 (8.84%). These four congeners accounted of 87.23% from Σ PCBs.

6.2 Levels of PCDD/Fs and dl-PCBs with TEF in collected breast milk samples.

The mean total TEQ (Σ TEQ-PCDD/Fs/dl-PCBs) was of 16.74 pg TEQ/g fat, ranged between 4.73 to 36.98 pgTEQ/g fat. PCDD/Fs accounted of 59%, while dl-PCBs accounted of 41% from Σ TEQ.

The mean TEQ of mono-ortho PCBs, PCDDs, PCDFs and non-ortho-PCBs was of 0.27 pgTEQ/g fat (1.61%), 4.59 pgTEQ/g fat (27.42%), 5.27 pgTEQ/g fat (31.48%) and 6.61 pgTEQ/g fat (39.49%), ascending respectively from Σ TEQ. Which means that non-ortho PCBs had the highest contribution to the total TEQ (Σ TEQ).

The total TEQ concentration of 17 PCDD/Fs ranged from 0.7 to 30.44 pg WHO-TEQ/g fat with a mean concentration of 9.86 pg WHO-TEQ/g fat. The mean concentrations of individual congener ranged from 0.0001pg WHO-TEQ/g fat for OCDF (the lowest concentration) to 4.09 pg WHO-TEQ/g fat for 2,3,4,7,8-PeCDF (the highest concentration).

PCDF congeners and PCDD congeners contributed of 53.46% and 46.57% to \sum TEQ-PCDD/Fs in breast milk samples, respectively. By TEQ concentration, 2,3,4,7,8-PeCDF made the highest contribution to \sum TEQ-PCDD/Fs followed by 1,2,3,7,8-PeCDD. These two congeners contributed 41.02% and 31.06% to \sum TEQ-PCDD/Fs, respectively.

The total TEQ concentrations of 12 PCBs ranged from 2.52 to 10.34 pg WHO-TEQ/g fat with a mean concentration of 6.88 pg WHO-TEQ/g fat. The mean concentrations of individual congener ranged from 0.0003 pg WHO- TEQ/g fat for PCB77 (the lowest concentration) to 9.41 pg WHO-TEQ/g fat for PCB126 (the highest concentration).

The 4 non-ortho dl-PCB congeners accounted of 96.03% from the total PCBs (\sum TEQ-dl-PCBs), while the 8 mono-ortho dl-PCB congeners accounted of 3.97% from \sum TEQ-dl-PCBs. PCB 126 was the predominant congener in all samples with a mean percentage contribution of 88.54 % with a concentration ranging from 1.72 to 9.41pg/g TEQ fat.

6.3 Correlation with number of deliveries

The mean total TEQ concentration of PCDD/Fs and dl-PCBs in breast milk samples of primiparous mothers was 11.3 and 7.41 pgTEQ/g fat respectively, while for multiparous mothers were and 8.5 and 6.62 pgTEQ/g fat, respectively. This means that the levels of PCDD/Fs in breast milk samples tended to decrease with the increase of number of deliveries.

6.4 Effect of age

Donors were divided into groups considering aging (age groups lower than 25, from 25 to 30 and higher than 30 years). PCDD/Fs and dl-PCBs concentrations were significantly related to age of mother, where older mothers had higher level of PCDDs/Fs and dl-PCBs in their milk than younger mothers (8.26, 10.05 and 12.28pg TEQ/g fat, respectively).

6.5 Estimating daily intake (EDI) of PCDD/Fs and PCBs for infants

The mean EDI was 69.06 pgTEQ kg⁻¹bw day⁻¹, ranged from 21.03 to 212 pg TEQ kg⁻¹bw day⁻¹. The PCDD/Fs daily intake contribution to the total daily intake found to be higher than the contribution of PCBs daily intake. The mean EDI of PCDD/Fs was of 56.8%, while the mean EDI of dl-PCBs was of 43.2% from the total EDI.

The most contributed congeners to the total daily intake are PCB126, 2,3,4,7,8- PeCDF and 1,2,3,7,8- PeCDD with account of 38.22%, 22.93% and 18.28%, as respectively from the total daily intake. These three congeners accounted of 79.43% while all other congeners accounted of 20.57% from the total daily intake.

6.6 Interpretation of results

Qalyubia governorate is considered one of the governorates that is famous for its agricultural and industrial activities which means it includes the industrial and non-industrial sources of these contaminants, because of its location in the middle of Delta. Therefore, it has represent a meeting point for all pollutants from many neighboring governorates, especially Greater Cairo Governorate.

Among the sources of pollution; the municipal waste incinerators, which include the plastic and solid waste, are the main sources of PCDD/Fs and dl-PCBs in the environment. This source is characterized by greater presence of OCDD, 2,3,4,7,8-PeCDF and 1,2,3,4,7,8-PeCDD. In addition, portion dl-PCBs formed in combustion processes in presence of carbon source and chlorine. Coal power and industrial of plastic and metals emissions, where dominated by the congeners of OCDD, PeCDF, and

HpCDF. In addition, these congeners and higher levels of dl-PCBs were the common undesirable pollutants in the production of cement.

On the other hand, the emission levels of PCDD/Fs and dl-PCBs from non-industrial sources mostly influenced by the degree of social awareness of the population. These emissions were difficult to qualify and quantify because they can proceed from several diffuse focuses, where the combustion and generation process is generally uncontrolled. Accidental fires, diesel engines, release of PCDD/F from pentachlorophenol-treated wood products, and illegal incineration of household wastes were the most important non-industrial sources.

As general, consumption of contaminated food is the major route of human exposure to PCDD/Fs and dl-PCBs, and accounted up to 90%. When comparing PCDD/Fs and dl-PCB congener profiles for human milk samples and foodstuffs of animal origin with high fat content such as meat, egg and fish, since these lipophilic contaminants accumulate in fatty tissues. The pattern of dl-PCBs is quite similar to the various matrices. All the twelve congeners of dl- PCBs detected in all breast milk samples. The most abundant congener was PCB-118 (4021.78pg/g fat), accounting of 43.58% from Σ dl-PCBs, followed by PCB-105 (13.86%) and PCB-156 (20.95%); these three congeners contributed 78.4% from Σ dl-PCBs in the breast milk samples. For poultry, egg, meat, liver, milk and fish, these three congeners contributed 85.6%, 82.1%, 73%, 80.8%, 75.5% and 82.1% from Σ dl-PCBs, respectively. The PCB congener fingerprints was similar for human milk samples and the foodstuffs evaluated; although our food samples does not represent all the food categories, these results seem to imply that dietary intake is the main

source for human dioxins and PCBs exposure. For PCDD/F, OCDD was dominant in all matrices and gradually increased with the lipid content.