

HYBRID SOLAR DRYING OF MEDICINAL AND HERBAL PLANTS

BY

MAHMMOUD MOHAMED EL HOSINY MOHAMED ELKASHOTY

B. Sc., Agricultural Mechanization, Moshtohor Faculty of Agriculture, Zagazig Univ., 2001

M. Sc. (Agricultural Engineering), Moshtohor Faculty of Agriculture, Benha Univ., 2012

A THESIS

Submitted in Partial Fulfillment of The

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL SCIENCES

(AGRICULTURAL ENGINEERING)

AGRICULTURAL AND BIO-SYSTEMS ENGINEERING DEPARTMENT

FACULTY OF AGRICULTURE, MOSHTOHOR

BENHA UNIVERSITY

2021

Abstract

The main aim of this work utilize the hybrid solar dryers. Different drying temperatures and air recirculation rates tested their effects on the weight losses, moisture content and energy consumption. To achieve that different drying temperatures (50, 55 and 65 °C) and air recirculation rates (70, 80 and 90 %) were used. A mathematical model developed for heat and mass balance to predict the temperature inside the drying chamber and moisture loss from the product. The obtained results indicated that the air temperature of the drying chamber during the winter season ranged from 24 to 50, 24 to 50, 20 to 50 °C, from 27 to 55, 29 to 55 and 13 to 55 °C and from 25 to 60, 29 to 60 and 18 to 60 °C. and during the summer season ranged from 24 to 50, 26 to 50 and 24 to 50 $^{\circ}\mathrm{C}$, from 28 to 55, 29 to 55 and 28 to 55 $^{\circ}\mathrm{C}$ for and from 25 to 60, 29 to 60 and 34 to 60 °C at 50, 55, 60 °C drying temperature for 70, 80 and 90 % air recirculating rates, respectively. The accumulated weight loss of mint leaves during winter season increased from 79.93 to 80.10, 79.99 to 80.15 and 80.05 to 80.29 %, and during summer season increased from 79.86 to 80.14, 80.01 to 80.18 and 80.06 to 80.29 %. and for basil leaves winter season increased from 83.94 to 84.13, 84.06 to 84.31 and 84.21 to 84.46 %, and during summer season increased from 83.98 to 84.15, 84.05 to 84.27 and 84.22 to 84.43 %, when the drying temperature increased from 50 to 60 °C, respectively, for 70, 80 and 90 % air recirculating rates. The moisture content of mint leaves winter season decreased from 396.03 to 2.78, 400.00 to 4.40 and 402.01 to 5.62 % d.b., from 400.00 to 0.80, 402.01 to 2.01 and 404.03 to 3.23 % d.b., from 402.01 to 1.61, 404.03 to 7.26 and 408.13 to 14.23 % d.b. During summer season decreased from 396.03 to 1.98, 400.00 to 5.2 and 404.03 to 6.45 % d.b., from 400.00 to 0.80, 402.01 to 4.42 and 404.03 to 3.23 % d.b., from 402.01 to 2.01, 404.03 to 8.47 and 408.13 to 10.98 % d.b., At 50, 55, 60 °C drying temperature for 70, 80 and 90 % air recirculating, respectively. For basil leaves winter season decreased from 521.12 to 3.73, 528.93 to 6.92 and 528.93 to 5.03 % d.b., from 528.93 to 3.77,

532.91 to 5.70 and 536.94 to 6.37 % d.b., from 532.91 to 5.7, 536.94 to 6.37 and 545.16 to 12.90 % d.b., and during summer season decreased from 525 to 6.88, 528.93 to 6.94 and 532.91 to 3.80 % d.b., from 528.93 to 6.92, 532.91 to 5.70 and 536.94 to 3.80 % d.b., from 532.91 to 7.59, 536.94 to 5.10 and 541.03 to 19.23 % d.b., At 50, 55, 60 °C drying temperature for 70, 80 and 90 % air recirculating rates, respectively. The drying rate of mint leaves during winter season increased from 98.31 to 121.96, 122.83 to 171.77 and 133.47 to 214.86, and during summer season increased from 112.59 to 144.57, 122.83 to 171.77 and 133.33 to 176.51 g_{water} kg⁻¹ h⁻¹, when the drying temperature increased from 50 to 60 °C, respectively, for 70, 80 and 90 % air recirculating rates after 15 min of drying period. For basil leaves during winter season increased from 137.97 to 174.63, 161.59 to 192.94 and 175.74 to 212.90 And during summer season increased from 148.04 to 176.37, 160.62 to 193.86 and 191.02 to 231.91 gwater kg⁻¹ h⁻¹, when the drying temperature increased from 50 to 60 $^{\circ}$ C, respectively, for 70, 80 and 90 % air recirculating rates after 15 min of drying period. The highest value of total chlorophyll of dried mint was 749.1, at 50°C and 90 % air recirculating rate and lowest value of total chlorophyll was 706.7 at 60°C and 70 % air recirculating rate. The highest value of color of dried mint was 37.72 at 50°C and 90 % air recirculating rate and lowest value of color of dried mint was 34.97 at 60°C and 70 % air recirculating rate. The highest value of mint essential oil content was 2.1, at 50°C and 90 % air recirculating rate and lowest value of mint essential oil was 1.5 at 60°C and 70 % air recirculating rate. The total cost of dried mint increased from 8.60 to 7.44, 9.73 to 8.03 and 10.91 to 8.85 EGP kg⁻¹ of mint, when the air recirculating rates percentage increased from 70 to 90 %, respectively at 50, 55 and 60 °C drying temperature. The model results were in a reasonable agreement with the experimental ones.

TABLE OF CONTENTS

Subject	page
AKNOWLDGEMENT	
ABSTRACT	
TABLE OF CONTENTS	Ι
LIST OF TABLES	VIII
LIST OF FIGURES	Х
LIST OF ABBREVIATION	XV
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Overview of Drying	
2.2. Classification of drying methods	
2.2.1. Natural (sun) drying	10
2.2.2. Mechanical (artificial) drying	12
2.2.3. Solar drying	13
2.3. Classification of solar drying systems	15
2.4. Design Methodology	15
2.4.1. Types of solar driers	15
2.4.2. Open sun drying (OSD)	17
2.4.3. Direct type solar drying (DSD)	17
2.4.4. Indirect type solar drying (ISD)	18

2.5. Hybrid solar dryers	
2.5.1. Solar drying system with thermal storage	24
2.5.2. Solar drying system with auxiliary unit	25
2.5.2.1. Electric heating	25
2.5.2.2. Biomass burner	27
2.5.2.3. Liquefied petroleum gas (LPG) burner	28
2.5.2.4. Solar drying system with diesel engine	28
2.5.3. Hybrid with geothermal or wastewaters	29
2.5.4. Solar drying system with photovoltaic	30
2.5.5. Solar drying system with heat pump	32
2.5.6. Solar drying system with chemical heat pump	33
2.5.7. Solar-assisted dehumidification system	34
2.6. Factors of affecting drying	
2.6.1. Type of Material Dried	35
2.6.2. Method of distribution of the material inside the dryer	37
2.6.3. Drying conditions	37
2.6.3.1. The temperature of drying air	38
2.6.3.2. The air velocity	39
2.6.3.3. The relative humidity of drying air	40
2.7. Quality of herbal plants after drying	41

2.7.1. Mint Plant	44
2.7.2. Basil Plant	44
2.8. The effect of drying on the quality of dried plants	
2.8.1. Chlorophyll retention	46
2.8.2. Color of the dried plants	48
2.8.3. Essential oil percentage and constituents	50
2.9. Energy of drying and cost	55
3. MATERIALS AND METHODS	59
3.1. Materials	59
3.1.1. Drying system description	59
3.1.1.1. The solar collector	62
3.1.1.2. The drying chamber	63
3.1.1.3. The trays	63
3.1.1.4. The blower	63
3.1.1.5. The burner	64
3.1.1.6. Control units	64
3.1.1.7. Numbering the gates and directions of airflow	64
3.1.2. Instruments	
3.1.2.1. Thermocouple	66
3.1.2.2. Temperature & Humidity Sensor	67

3.1.2.3. Weight sensor	68
3.1.2.4. Thermo-Anemometer	69
3.1.2.5. An electric digital balance	70
3.1.2.6. Electric oven	71
3.2. Methods	72
3.2.1. Treatments	72
3.2.2. Measurements and determination	72
3.2.2.1. Moisture content	73
3.2.2.2. Drying rate	73
3.2.3. The quality of dried product	
3.2.3.1. Total Chlorophyll content	74
3.2.3.2. Color analysis	75
3.2.3.3. Extraction of essential oil	76
3.2.4. Power and energy requirement	76
3.3. Total Costs	
3.3.1. Fixed costs (Fc)	77
3.3.2. Variable (operating) costs (Vc)	
3.3.3. Total costs (Tc)	78
3.4. Model Development	
3.4.1. Heat balance	79

3.4.2. Mass balance	85
4. RESULTS AND DISCUSSION	
4.1. Environmental Conditions	
4.1.1. Drying air temperature inside drying chamber drying winter season	90
4.1.2. Drying air temperature inside drying chamber drying winter season	93
4.2. Weight loss	95
4.2.1. Accumulated weight loss of mint leaves drying in winter season	95
4.2.2. Effect of weight loss of mint leaves drying in summer season	98
4.2.3. Effect of weight loss of basil leaves drying in winter season	101
4.2.4. Effect of weight loss of basil leaves drying in summer season	105
4.3. Moisture content	108
4.3.1. Effect of moisture content of mint leaves drying in winter season	108
4.3.2. Effect of moisture content of mint leaves drying in summer season	111
4.3.3. Effect of moisture content of basil leaves drying in winter season	114
4.3.4. Effect of moisture content of basil leaves drying in summer season	117

4.4. Drying rate	
4.4.1. Effect of drying rate of mint leaves drying in winter season	121
4.4.2. Effect of drying rate of mint leaves drying in summer season	124
4.4.3. Effect of drying rate of basil leaves drying in winter season	126
4.4.4. Effect of drying rate of basil leaves drying in summer season	129
4.5. Effect of drying air temperature and air recirculating percentage on quality of dried mint leaves	
4.5.1. Total chlorophyll content	
4.5.2. Color	
4.5.3. Mint essential oil content	
4.6. Total Costs	
4.7. Model results	
4.7.1. Model experimentation	
4.7.1.1. Effect of the ambient relative humidity values on the predicted temperature inside the drying chamber	137
4.7.1.2. Effect of the percentages of air recirculation on the predicted temperature inside the drying chamber	139
4.7.1.3. Effect of the different temperatures and relative humidity values on the moisture losses from the product	141

4.7.2. Model Validation	142	
5. SUMMARY AND CONCLUSIONS	154	
6. REFERENCES.		
7. APPENDICES	184	
8. ARABIC SUMMARY	ĺ	

No.	Title	Page
2.1	Comparisons of natural-circulation solar-energy dryers	20
3.1	Control of gates	65
3.2	Specifications of scanning thermometer.	66
3.3	Specifications of Temperature & Humidity Sensor.	67
3.4	Specifications of Weight Sensor.	68
3.5	Specifications of Thermo-Anemometer.	69
3.6	Electric digital balance specifications.	70
3.7	The parameters used in the model	88
4.1	Drying air temperature inside drying chamber during winter season	91
4.2	Drying air temperature inside drying chamber during summer season.	93
4.3	Effect of weight loss at different drying air temperatures and different air recirculating during drying period.	96
4.4	Effect of weight loss at different drying air temperatures and different air recirculating during drying period.	99
4.5	Effect of weight loss at different drying air temperatures and different air recirculating during drying period.	102
4.6	Effect of weight loss at different drying air temperatures and different air recirculating during drying period.	105
4.7	Effect of moisture content at different drying air temperatures and different air recirculating during drying period.	109
4.8	Effect of moisture content at different drying air temperatures and different air recirculating during drying	112

LIST OF TABLES

	period.	
4.9	Effect of moisture content at different drying air temperatures and different air recirculating during drying period.	115
4.10	Effect of moisture content at different drying air temperatures and different air recirculating during drying period.	118
4.11	Effect of drying rate at different drying air temperatures and different air recirculating during drying period.	121
4.12	Effect of drying rate at different drying air temperatures and different air recirculating during drying period.	124
4.13	Effect of drying rate at different drying air temperatures and different air recirculating during drying period.	127
4.14	Effect of drying rate at different drying air temperatures and different air recirculating during drying period.	130
4.15	Total chlorophyll of mint leaves that dried under different drying air temperatures and different air recirculating percentage	133
4.16	The color of mint leaves that dried under different drying air temperatures and different air recirculating percentage.	134
4.17	Mint essential oil content that dried under different drying air temperatures and different air recirculating percentage.	135
4.18	The total costs of dried mint leaves.	136
4.19	The constants of these equation and coefficient of determination.	147

No.	Title	Page
2.1	Classification of solar dryers and drying modes	15
3.1	Photos of the hybrid solar dryer.	60
3.2	Image of the hybrid solar dryer.	60
3.3	Elevation, plan and side view for the hybrid solar dryer.	61
3.4	Solar collector.(a) Geometric view (b) Top view.	62
3.5	The drying chamber.	63
3.6	Image of thermocouple.	67
3.7	Image of Temperature & Humidity Sensor.	68
3.8	Image of Weight Sensor.	69
3.9	Thermo-Anemometer.	70
3.10	Electric digital balance.	71
3.11	Electric oven image.	71
3.12	Diagram of mint and basil preparation steps for drying	72
3.13	Flowchart of the model steps and sequences	89
4.1	Drying air temperature inside drying chamber during winter season. a: 50 °C b: 55 °C c: 60 °C	92
4.2	Drying air temperature inside drying chamber during summer season. a: 50 °C b: 55 °C c: 60 °C	94
4.3	The accumulated weight loss of mint leaves at different of drying air temperature and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	97
4.4	The accumulated weight loss of mint leaves at different of drying air temperature and different air recirculating	100

LIST OF FIGURES

	during drying period. a: 50 °C b: 55 °C c: 60 °C	
4.5	The accumulated weight loss of basil leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	103
4.6	The accumulated weight loss of basil leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	106
4.7	The moisture content of mint leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	110
4.8	The moisture content of mint leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	113
4.9	The moisture content of basil leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	116
4.10	The moisture content of basil leaves at different drying air temperatures and different air recirculating during drying period. a: $50 \ ^{\circ}C$ b: $55 \ ^{\circ}C$ c: $60 \ ^{\circ}C$	119
4.11	The drying rate of mint leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	122
4.12	The drying rate of mint leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	125
4.13	The drying rate of basil leaves at different drying air temperatures and different air recirculating during drying period. a: 50 °C b: 55 °C c: 60 °C	128
4.14	The drying rate of basil leaves at different drying air temperatures and different air recirculating during drying period. a: $50 \ ^{\circ}C$ b: $55 \ ^{\circ}C$ c: $60 \ ^{\circ}C$	131

4.15	Total chlorophyll of mint leaves that dried under different drying air temperatures and different air recirculating percentage.	133
4.16	The color of mint leaves that dried under different drying air temperatures and different air recirculating percentage.	134
4.17	Mint essential oil content that dried under different drying air temperatures and different air recirculating percentage.	136
4.18a	Predicted temperature inside the drying chamber at different relative humidity at 50°C drying air temperature.	138
4.18b	Predicted temperature inside the drying chamber at different relative humidity at 55°C drying air temperature.	138
4.18c	Predicted temperature inside the drying chamber at different relative humidity at 60°C drying air temperature.	138
4.19a	Predicted temperature inside the drying chamber at different percentages of air recirculation at 50°C drying air temperature	140
4.19b	Predicted temperature inside the drying chamber at different percentages of air recirculation at 55°C drying air temperature	140
4.19c	Predicted temperature inside the drying chamber at different percentages of air recirculation at 60°C drying air temperature	140
4.20	The predicted moisture losses of the product, which dried under different temperatures and relative humidity values.	141
4.21a	The predicted and the measured temperature inside the	143

	drying chamber at 50°C drying air temperature	
4.21b	The predicted and the measured temperature inside the drying chamber at 55°C drying air temperature	143
4.21c	The predicted and the measured temperature inside the drying chamber at 60°C drying air temperature	143
4.22a	The comparison between the predicted and the measured temperature inside the drying chamber at 50°C drying air temperature	144
4.22b	The comparison between the predicted and the measured temperature inside the drying chamber at 55°C drying air temperature	144
4.22c	The comparison between the predicted and the measured temperature inside the drying chamber at 60°C drying air temperature	144
4.23	The predicted and the measured temperature inside the drying chamber at different percentages of air recirculation and 50°C drying air temperature.	148
4.24	The predicted and the measured temperature inside the drying chamber at different percentages of air recirculation and 55°C drying air temperature.	149
4.25	The predicted and the measured temperature inside the drying chamber at different percentages of air recirculation and 60°C drying air temperature.	150
4.26	The comparison between the predicted and the measured temperature inside the drying chamber at different percentages of air recirculation and 50°C drying air temperature.	151
4.27	The comparison between the predicted and the measured temperature inside the drying chamber at different percentages of air recirculation and 55°C drying air temperature.	152

4.28	The comparison between the predicted and the measured temperature inside the drying chamber at different percentages of air recirculation and 60°C drying air temperature.	153
------	--	-----