USE OF SOME STREPTOMYCES SPECIES AS BIO-AGENTS TO CONTROL BEAN WHITE ROT DISEASE CAUSED BY Sclerotinia sclerotiorum

By

DOHA ALAAELDIN SAAD SOUFI ESMAIL GEBILY B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Fayoum Univ., 2010 M.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Fayoum Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Cairo University EGYPT

2021

Format Reviewer

Vice-Dean for Graduate Students and Research

Name of Candidate: Doha Alaa Eldin Saad Gebily	Degree: Ph.D.		
Title of Thesis: Use of some Streptomyces species as bio-agents to control			
bean white rot disease caused by Sclerotic	nia sclerotiorum		
Supervisors: Dr. Gamal Amin Mohamed Ghanem			
Dr.Mona Mahmoud Maher Ragab			
Dr. Ayat Mahmuod El-Sayed			
Dr.Nour El-Deen Kamel Soliman (Late) & Dr. Tawfik H	Hafez Abd El-Moity (Late)		
Denartment: Plant Pathology	Approval: 27 /5/2021		

ABSTRACT

White mold disease, caused by *Sclerotinia sclerotiorum* the devastating pathogen, attacks green bean (*Phaseolus vulgaris* L.) and several crops worldwide. The present investigation was conducted to introduce some antagonistic microorganisms as novel antifungal substances to be an alternative and secure method to effectively control the disease. Out of 24 isolates, three *Streptomyces* isolates were molecularly characterized. PCR amplification of the fungus pathogen and *Streptomyces* isolates 16S rDNA gene sequences exhibited amplicons of around 535bp and 1300bp, respectively. The characterized Streptomyces isolates were sequenced and submitted into Genebank under accession numbers *i.e.*, S. griseus (MT210913 "DG5"), S. rochei (MN700192 "DG4") and S. sampsonii (MN700191 "DG1"). Phylogenetic tree of the nucleotide sequence analysis of the three *Streptomyces* spp. indicated that S. griseus MT210913 was closely related to S. sampsonii MN700191 (96%), secondly ranked by S.rochei MN700192 (93.1%). Afterward, the antifungal activity of Streptomyces spp. against S. sclerotiorum was evaluated in vitro and in vivo (in the greenhouse and field). In vitro tests, proved that the reduction percentages in mycelial growth of pathogen ranged between 31.4-60.17%, indicating that S. rochie gave the highest inhibition percent. Incorporations of Streptomyces spp culture filtrate components into culture media proved that S. sampsonii was more efficient as a bioagent in reducing mycelial growth pathogen by 84.50%. When the effectiveness of the bioagent volatile compounds was evaluated, the inhibition of the pathogen growth ranged between 54.50-72.54%, respectively, revealing that S. rochei was the highest inhibitor followed by S. griseus. Results of GC-Mass analysis revealed the presence of 44, 54 and 47 diverse secondary metabolites compounds produced by S. sampsonii DG1, S. rochie DG4, and S. griseus DG5, respectively. Examining parasitic activity of Streptomyces spp upon S. sclerotiorum was demonstrated by light and scanning electron (SEM) micrographs exhibited the interaction as deformation, contraction, and collapse in the mycelium of the pathogen. Viability and germination of pathogen sclerotia were reduced when they dipped into the Streptomyces culture broth for 10, 20, and 30 days. Application of the 3 Streptomyces spp. in the field proved a great potential to control the disease. The results suggested that the 3 Streptomyces spp. and their secondary metabolites can be biofertilizers as enhancers in plant growth and potential biocontrol agents for controlling bean white rot disease. Finally, the author suggests that the phenomenon of the mycoparsitism in case of Streptomyces could be named actinoparasitism. Key words: S. sclerotiorum, Streptomyces spp., antifungal activity, green bean

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
1. White rot disease and its economic importance
a . Survey of white rot disease
b . Isolation and identification of the causal organism
c. Molecular identification of the pathogen (S. sclerotiorum)
2. Actinomycetes (Actinobacteria)
a . Difination, classification and characteristics
b . Prevalence of Actinobacteria.
c. Isolation and identification of Actinobacteria
d. Molecular characterization of Actinobacteria
e. Characterization of Streptomyces spp. bioactive secondary
metabolites utilizing Gas chromatography-mass spectrometry
(GC-Mass) analysis
f . Application of Actinobacteria to control plant diseases
1. Potential activities of Actinobacteria <i>in vitro</i>
2. Application of Actinobacteria <i>in vivo</i>
3. Postharvest studies
MATERIALS AND METHODS
1. Isolation and purification of the causal pathogen
2. Molecular identification of the pathogen
3. Isolation and purification of Streptomyces isolates
4. Molecular characterization of Streptomyces isolates
5. GC-Mass analysis of <i>Streptomyces</i> spp. secondary metabolite
a. Extraction of the secondary metabolites
b . Gas chromatography-mass spectrometry (GC-Mass analysis)
 6. Antifungal bio-assays of <i>Streptomyces</i> spp <i>in vitro</i> a. Dual culture technique
b . Mechanism of parasitism
1

of Streptomyces spp. antifungal compounds on the	e 56
pathogen mycelial growth suppression	
Impact of filtration and heat treatment on the efficacy of	
Streptomyces spp. antifungal compounds on the pathogen	57
mycelial growth suppression.	
Antifungal activity of volatile compounds produced by	57
	^ /

Page

59

61

e.	Antifungal	activity	of volatile	compounds	produced by	57
	Streptomyc	es spp				5/
				erotia into cul		5 0
	Streptomyc	es spp. or	ngermination	n and myceliu	m growth	58

c. Impact of light and darkness conditions on the efficiency

7. Greenhouse experiments Reactions of green been cultivers to the infection b

a. Reactions of green bean cultivars to the infection by	60
S. sclerotiorum under greenhouse conditions	
b. Impact of inoculum potentiality of <i>S. sclerotiorum</i> on green	60
bean cv. Paulista white mold diseases incidence	

61 c. Determine the efficacy of *Streptomyces* spp. in vivo.....

8. Field experiments

a. Influence of spraying Streptomyces spp. at different times of	1
the percentages of disease incidence and plant parameter	s 63
& components	
b. Effect of spraying <i>Streptomyces</i> spp. at different	,
concentrations on the percentages of disease incidence and	64

plant parameters & components..... **c.** Impactof spraying *Streptomyces* spp. at different numbers on the percentages of disease incidence and plant parameters & 64 components.....

9. Post-harvest and Shelf-life experiments 64 **a**. Influence of applying *Streptomyces* spp. at different times on controlling the disease and extending shelf-life period of 66 bean pods.....

b. Effect of applying *Streptomyces* spp. at different concentrations on controlling the disease and extending 66 shelf-life period of bean pods.

Page

c . Influence of spraying <i>Streptomyces</i> spp. at different	
numbers on controlling the disease and extending shelf-life period of bean pods	67
Statistical Analysis	67
RESULTS AND DISCUSSION	69
1. Isolation, purification and molecular characterization of	09
the pathogen	70
2. Molecular characterization of the <i>Streptomyces</i> spp	76
3. GC-Mass analysis of <i>Streptomyces</i> spp. secondary metabolites	80
	101
a In vitro inhibitory potential of Streptomyces spp against	
S. sclerotiorum	101
b Examination of the parasitic mechanisms of <i>S</i> rochei using	105
sinde technique	105
c. Impact of light and darkness conditions on antifungal	107
activity in suppression of pathogen mycellum growth	107
d . Impact of filtration and heat treatment on antifungal	
activity of <i>Streptomyces</i> spp. in suppression of pathogen mycelium growth	111
e Inhibitory effects of VOCs produced by <i>Streptomyces</i> spp	
on mycelium growth of <i>S. sclerotiorum</i>	114
f. Impact of soaking pathogen sclerotia into culture broth of	
	119
growth	
-	121
a. Reactions of green bean cultivars to the infection by	121
S. scierotiorum under greenhouse conditions	
bean cv. Paulista white mold diseases incidence	123
c. Evaluation of <i>Streptomyces</i> spp. antifungal activity against <i>S. sclerotiorum</i> under greenhouse conditions	124
6. Biological control of white mold of green bean disease by	
Streptomyces spp. under field conditions (in vivo)	126
a. Times of application experiments	127

field conditions	
a.2. Impact of applying <i>Streptomyces</i> spp. at different times on green bean plant vigour under field conditions.	130
a.3. Influence of applying <i>Streptomyces</i> spp. at various times on chemical components of the treated plants	132
b. Impact of culture broth concentrations	136
b.1. Impact of applying <i>Streptomyces</i> spp. at different concentrations on bean white rot disease incidence	136
b.2. Impact of applying <i>Streptomyces</i> spp. at various concentrations of on green bean plant vigour	139
b.3. Effect of applying <i>Streptomyces</i> spp. at different concentrations on chemical components of the treated plants.	141
c. Number of applications	144
c.1. Impact of applying <i>Streptomyces</i> spp. at different numbers on the percentage of disease incidence	144
c.2. Influence of applying <i>Streptomyces</i> spp. at different numbers on green bean plant vigour	146
c.3. Effect of applying <i>Streptomyces</i> spp. at different numbers on chemical components of the treated plants	149
7. Post-harvest and shelf life.	152
a . Influence of applying <i>Streptomyces</i> spp. at different times on shelf-life of bean pods at 5°C and 20±2°C	152
b . Impact of applying <i>Streptomyces</i> spp. at different concentrations on shelf life of bean pods at 5°C and 20±2°C	157
c . Effect of applying <i>Streptomyces</i> spp. at different numbers on shelf- life of bean pods at 5°C and 20±2°C	159
CONCLUSION	164
RECOMMENDATIONS	165
SUMMARY	166
REFERENCES	173

a.1. Influence of applying *Streptomyces* spp. at different times on the percentages of disease incidence under

Page

127

ARABIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Sources and locations of the Streptomyces isolates	48
2.	Composition of the used media to grow the pathogen and actinobacteria.	49
3.	Sharing (%) of nucleotide sequences between the three <i>Streptomyces</i> spp. and others isolates from different geographical regions available in the GenBank	78
4.	GC-Mass analysis of the ethyl acetate extracts of <i>Streptomyces</i> spp.	87
5.	Inhibitory potential of <i>Streptomyces</i> spp. against fungus <i>S. sclerotiorum in vitro</i>	104
6.	Impact of light and darkness conditions on antifungal activity efficiency in the suppression of pathogen mycelium growth	108
7.	Suppression of pathogen mycelial growth by antifungal activity of <i>Streptomyces</i> spp. culture filtrate using Millipore membrane or heat treatment.	113
8.	Inhibitory effects of VOCs produced by <i>Streptomyces</i> spp. on mycelium growth of <i>S. sclerotiorum in vitro</i>	117
9.	Impact of soaking pathogen sclerotia into culture broth of <i>Streptomyces</i> spp. on sclerotia germination and mycelium growth.	120
10.	Reactions of green bean cultivars to the infection by <i>S. sclerotiorum</i> under greenhouse conditions	122
11.	Impact of inoculum potentiality of <i>S. sclerotiorum</i> on green bean cv. Paulista white mold diseases incidence	123
12.	Evaluation of <i>Streptomyces</i> spp. on controlling <i>S. sclerotiorum</i> under greenhouse onditions.	125
13.	Influence of applying <i>Streptomyces</i> spp. at different times on the percentages of disease incidence under field conditions	129

No.	Title	Page
14.	Impact of applying <i>Streptomyces</i> spp. at different times on green bean plant vigour under field conditions	133
15.	Influence of applying <i>Streptomyces</i> spp. at various times on chemical components of the treated plants	134
16.	Impact of applying <i>Streptomyces</i> spp. at different concentrations on bean white rot disease incidence	140
17.	Impact of applying <i>Streptomyces</i> spp. at various concentrations of on green bean plant vigour	143
18.	Effect of applying <i>Streptomyces</i> spp. at different concentrations on chemical components in the treated plants	145
19.	Impact of applying <i>Streptomyces</i> spp. at different numbers on the percentage of disease incidence	148
	Influence of applying <i>Streptomyces</i> spp. at different numbers on green bean plant vigour.	150
	Effect of applying <i>Streptomyces</i> spp. at different numbers on chemical components of the treated plants	153
22.	Influence of applying <i>Streptomyces</i> spp. at different times on shelf life of bean pods at 5°C and 20±2°C	158
	Impact of applying <i>Streptomyces</i> spp. at different concentrations on shelf life of bean pods at 5°C and 20±2°C	159
	Effect of applying <i>Streptomyces</i> spp. at different numbers on shelf life of bean pods at 5°C and 20±2°C	162

LIST OF FIGURES

No	Title	Page
1	Disease severity index for white rot of bean pods showed various degrees of severity as the scale from 0-10	65
2a.	Symptoms of naturally-infected bean plants cv. Paulista exhibited water-soaked, olive-green lesions, followed by white-cottony mold with collapsed tissues and sclerotia formation	72
2b.	Formation of mycelium on the collar region & above the ground ground level (leaves & pods)	72
2c.	Sclerotia formed on the infected pod	73
2d.	Pure culture of S. sclerotiorum grown on Cook's medium	73
2e.	Multi apothecia produced from one sclerotium	73
3a.	Products of polymerase chain reaction amplification isolate using the universal primers ITS-1 and ITS-4. A product (amplicon) of 553 bp length was amplified in green bean isolate (Is). M= Leader and Is=isolated fungus.	75
3b.	Phylogenetic tree obtained from the alignment of nucleotide sequences of the Egyptian isolate and fifteen sequences from GenBank. All 15 sequences show their GenBank codes and countries of origin	75
4a.	Products of polymerase chain reaction amplification isolates using the two universal primers 63-forward and 1387-reverse. Products(amplicons) of 1300 bp length were amplified from the three isolates of Streptomyces (Is). M = Leader, 1,2 and 3 = <i>isolated S. sampsonii, S. rochei</i> , and <i>S. griseus</i> .	78
4b.	Phylogenetic tree based on 16S rRNA gene sequence of <i>S. rochei</i> , <i>S. griseus</i> , and <i>S. sampsonii</i> with the reference Streptomyces 16S rRNAgene available in the GenBank.	79

No	Title	Page
5.a	Chemical structures of some secondary metabolites produced from GC-Mass analysis crude extract of <i>Streptomyces</i> spp.	98
5.b	Relative abundance of <i>Streptomyces</i> spp	100
6.	Inhibitory potential of <i>Streptomyces</i> spp. against fungus <i>S.sclerotiorum In vitro</i>	103
7.	Light micrograph shows the colonization of <i>S. rochei</i> on <i>S. sclerotiorum</i> mycelium. a): Untreated mycelium of <i>S. sclerotiorum</i> ; b): Smaller and thinner <i>S. rochei</i> mycelium, broken and distorted of <i>S. sclerotiorum</i> mycelium and c): <i>S. rochei</i> growing a long the mycelium of <i>S. sclerotiorum</i>	109
8.	Scanning electron micrographs of the deformation of the fungal mycelium. a): Untreated (control) mycelium of <i>S. sclerotiorum</i> , b): Bioagent <i>S. rochei</i> induced pores in the mycelium of <i>S. sclerotiorum</i> and c): <i>S. rochei</i> induced swollen, deformation, distortion and lysis of the pathogen mycelium as well as its grown inside the hyphae	110
9.	Impact of light and darkness conditions on culture filtrates efficiency in the suppression of pathogen mycelial growth	111
10.	Suppression of <i>S. sclerotiorum</i> mycelial growth by antifungal activity of <i>Streptomyces</i> spp. culture filtrate using Millipore membrane or heat treatment	114
11.	Effect of volatile organic compounds produced by the three <i>Streptomyces</i> spp. on mycelium growth of <i>S. sclerotiorum</i> .	117
12.	Light micrograph shows that volatiles compounds of S . rochei induced mycelial growth abnormalities in S . sclerotiorum: (a) mycelium of S . sclerotiorum (b&c) hyphal deformation, swollen and dark staining indicating hyphae death.	118

	Suppression of sclerotia germination and mycelial growth	
13.	after soaking into broth of the three Streptomyces spp. for	121
	10, 20 & 30 days.	