

Kafrelsheikh University

Faculty of Veterinary Medicine Animal Medicine Department (Infectious Diseases)

Comparative Diagnostic Study on Tuberculosis in Cattle and Buffaloes

A thesis submitted

By

Mohamed Ahmed Ali Borham

B. V. Sc., Kafrelsheikh University, 2011 M. V. Sc., Kafrelsheikh University, 2016

For

The degree of Ph. D. in Vet. Medical Science (Infectious Diseases)

Under Supervision of

Prof. Magdy H. Al-Gaabary

Prof. of Infectious Diseases and Head of Animal Medicine Department Faculty of Veterinary Medicine Kafrelsheikh University

Prof. Attia A. El-Gedawy

Chief Researcher of Bacteriology Animal Health Research Institute Dokki

Dr. Atef F. Oreiby

Assistant Prof. of Infectious Diseases Faculty of Veterinary Medicine Kafrelsheikh University

Contents

ContentPa	ıge
Introduction	1
Review of Literature	6
History and importance of bovine tuberculosis (bTB)	6
Etiology of bTB	7
Risk factors, transmission and Immunopathogenesis of bTB	10
Diagnosis of bTB	15
Field diagnosis of bTB	15
Tuberculin test	15
Antemortem examination of bTB	19
Postmortem examination of bTB	20
Laboratory diagnosis of bTB	22
IFN-γ release assay (IGRA)	22
ELISA	25
Mycobacterial culture	28
Histopathology as a diagnostic method of bTB	31
Molecular diagnosis	32
In-silico analysis	36
Treatment, Prevention and Control of bTB	39
Bovine TB in Egypt	42
• Materials and Methods	48
A. Materials:	
Study area	48

Contents

Animals	50
Samples	50
Materials used in ELISA	52
Media, stains, and chemicals	53
Materials used in RT-PCR	54
Materials used in conventional PCR	56
Materials used in the sequencing of conventional PCR products	58
Tools used in phylogenetic analysis	59
Bioinformatics tools	60

B. Methods:

Evaluation criteria of the performed SID test during the	e national
control program at the study area	61
Clinical and Postmortem examinations	61
In-Vitro Testing by cocktail-antigens ELISA	62
Histopathological examination	63
Mycobacterial culture	63
Real Time PCR (RT-PCR)	64
Conventional PCR	65
Sequencing	68

Contents

Phylogenetic analysis	70
Bioinformatics analysis	71
Epidemiological and statistical analysis	73
• Results	
• Discussion	126
• Summary	144
Conclusions	147
• References	149
• Appendices	
Arabic Summary	•••••

List of Tables

Table Page
Table (1): Prevalence of bTB in Egypt based on lesion inspection44
Table (2): Prevalence of bTB in Egypt based on tuberculin testing45
Table (3): Primer sequences used in RT-PCR
Table (4): Primer sequences used in conventional PCR
Table (5): Results of ELISA in relation to tuberculin test status
Table (6): The prevalence of bTB among examined slaughtered cattle and
buffaloes at Tanta slaughterhouse, Egypt in 2018 – 201977
Table (7): Distribution of the tuberculous lesions in different organs of
cattle and buffaloes affected with bTB in an abattoir survey in Tanta
slaughterhouse, Egypt, 2018 - 2019 79
Table (8): Comparison between culture, molecular and histopathological
tested vs positive samples104
Table (9): Mutated genes associated with drug resistance as well as,
spoligotyping and regions of difference (RDS) of the isolated
Mycobacterium spp113
Table (10): Gene mutations which are not associated with drug resistance in
the isolated Mycobacterium spp. of the current study, but previously
reported as drug resistant mutations114

List of Tables

Table (11): Reported gene mutations that don't confer drug resistance in
mycobacterial isolates at the current study and also previously reported as
non-conferred drug resistant mutations114
Table (12): New identified gene mutations within isolates of the current
study which require future experimental work for their validation116
Table (13): Detected mutations of <i>rpoC</i> gene117
Table (14): Detected mutations of <i>rrs</i> gene
Table (15): Detected mutations of <i>rrl</i> gene

FigurePage
Fig. (1): Map of the study area, Kafrelsheikh governorate49
Fig. (2): Map of Gharbia governorate49
Fig. (3): The collected blood, serum, and tissue samples in the current
study51
Fig. (4): Workflow of the performed in silico analysis60
Fig. (5): Optical Density values of the ELISA tested animals76
Fig. (6): S/P Values of positive and negative serum samples76
Fig. (7): Distribution of the tuberculous lesions in different organs79
Fig. (8): Differential percentages of the detected tuberculous lesions80
Fig. (9): Pulmonary TB affected cow, as revealed by PM examination
showed emaciation, arched back, and abducted fore limbs80
Fig. (10): Incised severely enlarged bronchial LN containing tuberculous
lesions
Fig. (11): Miliary TB on peritoneum "Pearls appearance"
Fig. (12): Large number of discrete shot-like tubercles on the pleura in a
miliary TB affected cow82
Fig. (13): Bronchial LN of a bull showing caseous granulomas82
Fig. (14): Multiple small sized caseous tubercles of bronchial LN of a
bull
Fig. (15): Severely enlarged mediastinal LN containing thick creamy
pus
Fig. (16): Incised retropharyngeal LN containing multiple thick yellow to
orange lesions surrounded by a thick fibrous capsule

Fig. (17): Miliary TB in a lung of a cow showing multiple yellowish white
tubercles that resembles pearls
Fig. (18): Opened retropharyngeal LN containing thick cheesy yellowish
pus
Fig. (19): Retropharyngeal LNs of a buffalo bull showing multiple
tuberculous nodules
Fig. (20): Extensively thick caseous yellowish materials with hyperemia and
bronchopneumonia in a cow
Fig. (21): Sliced cow lung showing diffused yellowish circumscribed
tubercles
Fig. (22): Severe huge inflamed and emphysematous lung of pulmonary TB
affected dairy cow
Fig. (23): Incised mesenteric LN containing yellowish creamy pus88
Fig. (24): Yellowish tubercles in liver of cow
Fig. (25): Tubercles affecting spleen of a miliary bTB affected cow89
Fig. (26): Peritoneum showing accumulation of chronic inflammatory cells,
epithelioid cells and giant cells (Stain H&E X100)91
Fig. (27): A high power of the previous picture showing large number of
langhans' giant cells with different type of chronic inflammatory cells
including lymphocytes (Stain H&E X200)91
Fig. (28): Mesenteric LN showing different calcified nodules within the
lymphatic tissues, calcification within necrotic tissues in the center (yellow
arrow) surrounded by fibrosis (Stain H&E X100)92
Fig. (29): Retropharyngeal LN showing old calcification (yellow arrow),
peripheral collar inflammatory cells accumulation (blue arrow) (Stain H&E
X200)

Fig. (30): Retropharyngeal LN showing old calcification with necrotic disintegrated tissues (Stain H&EX 200)93 Fig. (31): Peri-bronchial LN showing calcification, lytic tissues, and lymphatic tissue lysis (blue arrow), fibrosis around the calcified tissues Fig. (32): Peri-bronchial LN showing accumulation of giant cells (pink arrow), fibroblastic proliferation (blue arrow) and calcification in the centre (yellow arrow) (Stain H&E X200)94 Fig. (33): Lung interstitial thickening with inflammatory cell accumulation and atelectatic alveoli (Stain H&E X200)94 Fig. (34): Lung showing broncho-centric tuberculosis with expectoration of giant cells in the bronchioles (yellow arrow) and accumulation of chronic inflammatory cells in the thickened interstitial tissues around bronchioles (Stain H&E X200)95 Fig. (35): Hyperchromatic proliferated metaplastic epithelium of the bronchioles with severe peri-bronchial fibrosis (Stain H&E X200)......95 **Fig. (36):** Hyperplastic proliferated normal bronchiolar epithelium of lung (Stain H&E X400)96 Fig. (37): Lung showing other bronchioles with finger like projection metaplastic proliferated pleomorphic hyperchromatic epithelium lining of lung (cancerous lesion) (Stain H&E X200)......96 Fig. (38): liver showing multinodular hepatic cirrhotic nodules surrounded by fibroblastic proliferation (blue arrows) with accumulation of chronic inflammatory cells and giant cells (yellow arrow) (Stain H&E X100)97 Fig. (39): Liver showing accumulation of different types chronic inflammatory cells including lymphocytes, epithelioid cells, lysis of hepatic tissues and fibroblastic proliferation (yellow arrows) (Stain H&E X400)...97

Fig. (40): Liver showing Langhans 'giant cell (yellow arrow), vacuolation
necrotic tissues and, fibrosis (Stain H&E X400)98
Fig. (41): Liver showing severe engorgement of sinusoids with blood
(yellow arrows) (Stain H&E X200)98
Fig. (42): Lung showing proliferated hyperplastic and metaplastic epithelial
lining the bronchioles in addition to thrombus in the blood vessels (Stain
H&E X100)
Fig. (43): High power of the previous picture showing proliferated
hyperplastic and metaplastic elongated nuclei epithelial lining the
bronchioles (yellow arrows) pleomorphic different shape size preneoplastic
epithelial lining cells bronchioles (blue arrow) (Stain H&E X600)99
Fig. (44): Bronchial LN showing follicular lymphoma, many proliferated
follicles surrounded by connective tissues100
Fig. (45): Bronchial LN showing undifferentiated pleomorphic lymphocytes
(Stain H&E X400)100
Fig. (46): High power of previous picture illustrating abnormal
undifferentiated lymphocytes (Stain H&E X400)101
Fig. (47): Spleen with abnormal undifferentiated pleomorphic cells in
splenic follicles (Stain H&E X200)101
Fig. (48): Spleen showing abnormal atypical pleomorphic hyperchromatic
cells (Stain H&E X200)102
Fig. (49): High power of the previous picture of a spleen illustrating the
hyperchromatic pleomorphic undifferentiated cells (Stain H&E X600)102
Fig. (50): Growth of Mycobacterium ssp. colonies on Lowenstein-Jensen
slants103
Fig. (51): Analysis of the amplification plot of the tuberculous samples104

Fig. (52): PCR targeting 314 bp of <i>Mpb/Ugene</i> ; Lane1: control negative,
Lane2: control positive, Lane 4 to 13: positive samples105
Fig. (53): Phylogenetic tree showing clustering of 10 Egyptian strains of 5
cattle (C1-C5) and 5 buffaloes (B1-B5) in comparing with 18 standard
strains from gene bank. Strain B1 is the <i>Mtb</i> strain106
Fig. (54): The percent identity and the divergence between the ten strains of
the current study and the most similar strains (Cattle strains are labeled in
red and buffaloes strains are labeled in blue)107
Fig. (55): Alignment report of the ten strains (1-80 nucleotides) showing
mutations of 9 strains where Cytosine and Adenine replaced Adenine and
Guanine nucleotides at the position 10 and 11 in comparing with the most
similar 18 strains of the gene bank109
Fig. (56): Alignment report of the ten strains (80-160nucleotides) showing
no mutation
Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing
Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
 Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
 Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
 Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
 Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation
Fig. (57): Alignment report of the ten strains (160-240 nucleotides) showing no mutation

Summary

This study was conducted at the Middle-Delta region; Disuk, Sidisalem, EL-Reyad, Baltim and Biyala districts of Kafrelsheikh Governorate as well as Tanta abattoir at Gharbia Governorate to investigate the existing gap between TB-detection of the national control program SID test and that is during routine meat inspection. Additionally, to assess the cocktail antigen ELISA as a complementary test for TB diagnosis. Moreover, to estimate disease prevalence and describe the clinical signs, PM lesions, histopathological findings of bTB at the study area. Furthermore, to identify the involved mycobacteria with subsequent molecular investigation and bioinformatics analysis.

A total of 400 animals (330 cows and 70 buffaloes) were tested with SID during the national control program against bTB at Kafrelsheikh Governorate. In addition, total of 750 animals; 569 cows and 181 buffaloes in between 25 serum-sampled emergency slaughtered animals, were slaughtered at Tanta abattoir and subjected for clinical examination before slaughtering. After slaughtering, animals were subjected to PM examination.

Tuberculin-testing of 400 animals during the national control program was evaluated, many technical and procedural errors were detected, and all animals were negative. Out of them, 55 animals were tested by ELISA before the application of tuberculin test, 30 (54.5%) animals were seropositive.

A total of 25 emergency-slaughtered animals of unknown tuberculosis-status were investigated by cocktail-antigens ELISA and post-

Summary

mortem examination. Five visible tuberculous-lesion cases were detected and confirmed by PCR. ELISA was sensitive and predictive of the existence of tuberculous-lesions; 4(80%) out of 5 visible-lesion cases were seropositive. True prevalence among the slaughtered animals was 27.14%.

To confirm the effect of the reported errors on reliability of tuberculin test, reference serum of 20 tuberculosis-positive animals that were tested by standard-procedures tuberculin test and their status were confirmed by PCR after slaughtering, were tested by ELISA. Those reference samples were belonged to the TB project (No. 2966, Science & Technology Development Fund, 2017) in AHRI. A complete matching was evident, the 20 standardtuberculin positive animals were all seropositive by the cocktail antigen ELISA.

Out of the 750 examined slaughtered animals, visible TB was detected in 4 % of animals and the TP was estimated at 6.85% (95% CI: 5.3 % - 8.9%). The disease was significantly prevalent in females than in males and there was no significant difference in prevalence between cattle and buffaloes. Lesions were of variable size contained creamy, crumbly-cheese-like, or orange pus, most (40.95%) were in lungs and its associated LNs, followed by retropharyngeal (31.8%) and mesenteric LNs (13.6%).

Mycobacterial-culture, histopathology and RT-PCR targeting all members of MBTC were performed, upon which 85%, 80% and 100% of the tested lesions of each were confirmed as TB, respectively. *Mpb70*-targetting PCR was conducted on ten of RT-PCR positive samples, the amplicons were sequenced and identified nine *M. bovis* strains and, interestingly, one *Mtb* strain from a buffalo.

Summary

Bioinformatics tools were used for the prediction of gene mutations, nucleotide polymorphisms, lineages, drug resistance and PPI of the sequenced strains. Two *M. bovis* strains were belonged to BOV AFRI lineage (Spoligotypes BOV 1; BOV 2) whilst the remaining eight strains belonged to East-Asian (Beijing) lineage that indicate their geographical origin and the role of trading in transmission of mycobacteria across countries.

The *Mtb* strain was resistant to RIF, INH and SM, and to the best of our knowledge, this is the first report of MDR-*Mtb* originating from buffaloes. In addition, seven *M. bovis* strains were resistant to EMB and ETH. INH, RIF, SM, EMB and ETH resistances were associated with *KatG*, *rpoB*, *rpsL*, *embB* and *ethA* genes mutations, respectively. Other mutations and nucleotide polymorphisms of many genes were also predicted, which either aren't associated with drug resistance in this study but previously reported as drug resistant mutations, don't confer drug resistance or other mutations which are reported for the first time and require further experimental work for their validation.

PPI analysis revealed more interactions than what would be expected for a random set of proteins of similar size and had dense interactions between nodes that are biologically connected, as a group. Moreover, the algorithms predicted additional five functional partners (*rpsG, rplB, rplP*, *rpsS and rpoA*) that had a biological connection with the other genes.