

 ${f F}_{
m ACULTY}$ of ${f V}_{
m ETERINARY}\,{f M}_{
m EDICINE}$

Comparative application *in vitro* and *in vivo* of antimicrobial and Nano silver in controlling of some fish diseases pathogens

Thesis

Presented to The graduate School Faculty of Veterinary Medicine, Alexandria University For the requirements of the Degree

Doctor Philosophy of Veterinary Sciences

In Microbiology

Specialization (Bacteriology and Mycology)

by

Basma Mohamed Salem Dahdouh

(BVSc Faculty of Veterinary Medicine, Alexandria University, 2008) (MVSc Faculty of Veterinary Medicine, Alexandria University, 2016)

List of CONTENTS

Items	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Fish Aquaculture	5
2.2. Bacterial fish diseases	7
2.3. Antibiotic resistance	9
2.4. Nanoparticles utilization in fish medicine:	12
2.4.1. Silver nanoparticles (AgNPs):	12
2.4.2. Antibacterial actions of Nanoparticles	13
2.4.3. Synergistic effect of AgNPs and Antibiotics	15
2.5. Transmission electron microscopy (TEM) study	16
2.6. In vivo study	16
2.7. Histopathology studies	17
2.8. Toxicity of AgNPs	18
3. MATERIAL AND METHODS	20
3.1. Materials:	20
3.1.1. Silver Nanoparticles.	20
3.1.2 The bacterial strains, chemicals and reagents used in the antibacterial tests:	
3.1.3. Antibiotics	21
3.1.4. Media used in the current study	21

3.1.5. Chemicals	22
3.1.6. Instruments and equipments	23
3.1.7. The experimental study	24
Fish	24
3.2. Methods:	25
3.2.1. Methods of virulence	25
3.2.2. Antimicrobial sensitivity testing	25
3.2.3. The preparation of AgNPs	27
3.2.4. Evaluating antimicrobial activity of AgNPs	28
3.2.4.1. Turbidity	28
3.2.4.2. Determination of minimum bactericidal concentration (MBC)	30
3.2.4.3. Agar well diffusion method	30
3.2.4.4. Effect of AgNPs on Proteolytic activity of bacterial strains	31
3.2.4.5. Detecting of AgNPs effects on bacterial Motility	32
3.2.4.6. Detecting of AgNPs effects on Biofilm production	33
3.2.4.7. Combination of antibiotic discs and AgNPs particles	35
3.2.5. TEM studies for the interaction of bacteria and AgNPs	37
3.2.6. In vivo study	39
3.2.7. Histopathology	41
3.2.8. Toxicity of AgNPs in Fish flesh	41
4. RESULTS	42
4.1. Detecting the virulence of bacterial species: hemolysis, proteolysis	42

4.2. Antimicrobial sensitivity test using commercial Antibiotics	
4.3. Characterization of AgNPs	45
4.4. Antibacterial effects of AgNPs:	46
4.4. 1. Turbidity:	46
4.4.2. Determination of minimum bactericidal concentration (MBC	49
4.4.3. Pigment production inhibition	52
4.4.4. Agar well Diffusion method	53
4.4.5. Effect of AgNPs on bacterial Proteolysis	54
4.4.6. Motility results: swarming and swimming	55
4.4.7. Biofilm	59
4.4.8. Synergistic effect of doxy+AgNPs	62
4.4.9. Effect of combined streptomycin+ AgNPs	63
4.4.8. TEM results	64
4.4.9. <i>In vivo</i> challenge	67
4.4.10. Histopathology	72
4.4.11. Toxicity of AgNPs	81
5. DISCUSSION	81
5.1. Virulence of used bacterial species	82
5.2. Antibiotic sensitivity test	83
5.3. Characterization of AgNPs	83
5.4. Antibacterial effects of AgNPs:	84
5.4.1. Turbidity, TTC:	84

5.4.2. Minimum bactericidal concentration (MBC) using colony forming unit method	85
5.4.3. Pigment reduction	86
5.4.4. Inhibition of growth by Well diffusion	86
5.4.5. Effect of AgNPs on proteolytic effects	86
5.4.6. Effect of AgNPs on bacterial motility:	87
5.4.7. Biofilm reduction	87
5.4.8. Synergistic effect of AgNPs and commercial antibiotics	88
5.5. TEM	89
5.6. In vivo challenge	91
5.7 . Histopathology	
5.8. Toxicity of therapeutic dose of AgNPs	95
6. SUMMARY	96
7. References	99

List of Tables

Table	Title	Page
1	The design of experimental challenge of O. niloticus with the 3	40
	bacterial species	
2	The diameters of inhibition zones of commercial antibiotics	44
	against the 3 types of bacteria	
3	Biofilm reduction of different bacteria upon using AgNPs at conc	59
	25, 35, 50, 60, 75ppm and measured using spectrophotometer	
	Daily monitoring of fish signs and mortalities has been done for 28	70
Λ	days. Mortalities begun after 3 days of challenge until the day 25.	
-	The mortalities at days 26, 27, 28 became zero so it told us the end	
	of experiment	

List of Figures

Fig.	Title	Page
1	In 2012, annual wild and fisheries production (GAFRD 2012)	6
2	Features of aquaculture production (GAFRD 2012; CAPMAS 2012).	6
3	The most sites distribution of fish farming in Egypt (FAO 2010)	7
4	diagram showing the antibacterial effects of AgNPs on bacterial cell	14
5	Different dilutions of AgNPs has been prepared	26
6	A model explaining the biofilm production in wells	34
7	(TEM) with multiple lens configurations, including a standard lens for unsurpassed high contrast and a class-leading HR lens for high resolution. This breakthrough in advanced innovative design allows for highly efficient workflows and many specialized applications. It represents the cutting-edge solution for modern TEM analyses.	38
8	Different types of hemolysis: A (AH beta hemolysis), B (PA alpha hemolysis), C (SA beta hemolysis)	42
9	The proteolytic effect of AH, PA bacteria on skim milk	43
10	Different inhibition zones of commercial antibiotics against the 3 types of bacteria; AH, PA, SA	44
11	Size and shape of AgNPs in solution	45
12	Reduced turbidity of different bacteria (conc 10 ⁸ CFU) treated with AgNPs.	46
13	Reduced turbidity of different bacteria (conc 10 ⁵ CFU) treated with AgNPs by spectrophotometer after 3, 24 h	47

14	Viable cells reduction after treatment with AgNPs using TTC method	48
15	bacterial culture/broth adjusted to be 1×10^5 CFU of AH, PA and 10^7 CFU for SA., 50 µl added to 10ml culture broth, then incubated 37C/18-24h	49
16	Bacterial culture/broth adjusted to be 1×10^5 CFU of AH, PA. 50 µl added to 10ml culture broth, then incubated 37C/18-24h.	50
17	Treated culture /broth using AgNPs 50 μ l from each concentration added to 2 ml saline of 10 ⁸ CFU of bacterial strains	51
18	untreated PA produced a pigment (green) while pigment production decreased gradually until inhibition at con of AgNPs starting from 50 ppm	52
19	Antimicrobial activity of silver nanoparticles against various pathogenic bacterial strains shown by well-diffusion method.	53
20	Effect of different concentrations of AgNPs on proteolytic action of PA, SA.	54
21	PA cultured on swarming media, inhibition of swarming motility gradually upon increasing of AgNPs concentrations	55
22	AH cultured on swarming media, inhibition of swarming motility gradually upon increasing of AgNPs concentrations	56
23	Effect of different concentrations of Nano silver on swimming motility of AH, PA.	58
24	Graph represents the reduction of biofilm production after using AgNPs at different concentrations	60
25	Biofilm reduction due to AgNPs treatment of PA at different concentrations	61
26	Biofilm reduction in PA under microscope after treatment with 60, 75 ppm of AgNPs as compared with control PA	61
27	Synergistic effect of AgNPs+Doxy against various pathogenic bacterial strains shown by agar-diffusion method	62

28	synergistic effect of AgNPs+streptomycin against various pathogenic	63
	bacterial strains shown by agar-diffusion method	
29	AgNPs effects on AH bacterial cells under TEM	64
30	AgNPs effects on PA bacterial cells under TEM	65
31	AgNPs effects on SA bacterial cells under TEM	66
32	Signs and PM of challenged fish with the 3 types of bacteria. A (AH +ve), B	67
	(PA v+e), C (SA+ve) group	
33	Different signs of challenged O. niloticus treated with doxy and treated with	68
	gNPs. A (control -ve), B (AH + doxy), C (AH+ AgNps)	
34	The effect of doxycycline alone on challenged O. niloticus with different	69
	types of bacteria. A (Signs and PM of AH +doxy), B (Signs and PM of	
	PA+doxy), C (Signs and PM of SA + doxy).	
35	Total MR of O. niloticus challenged with 3 bacteria and treated with doxy	71
	alone, AgNPs alone, doxy+AgNPs, untreated group	
36	Total MR of O.niloticus challenged with 3 bacteria and treated with doxy	72
	alone, AgNPs alone, doxy+AgNPs, untreated group	
37	Histopathological sections of O. niloticus liver; control -ve, cont PA+ve,	73
	PA+Doxy, PA+NS	
38	Histopathological sections of O. niloticus liver; control -ve, cont SA+ve,	74
	SA+Doxy, SA+NS	
39	Histopathological sections of O. niloticus muscle; control -ve, cont AH+ve,	75
	AH+Doxy, AH+NS	
40	Histopathological sections of O. niloticus muscle; control -ve, cont PA+ve,	76
	PA+Doxy, PA+NS	
41	Histopathological sections of O. niloticus muscle; control -ve, cont SA+ve,	77
	SA+Doxy, SA+NS	

42	Histopathological sections of O. niloticus gills; control -ve, cont AH+ve,	78
	AH+Doxy, AH+NS	
43	Histopathological sections of O. niloticus gills; control -ve, cont PA+ve,	79
	PA+Doxy, PA+NS	
44	Histopathological sections of O. niloticus gills; control -ve, cont SA+ve,	80
	SA+Doxy, SA+NS	
45	The residues of AgNPs in muscles of O. niloticus in A, Muscles of control –	81
	ve fish. B, muscles of fish treated with AgNPs	

6- SUMMARY

The Current study aims are the comparison between the traditional antibiotics used in treating fish diseases caused by *A. hydrophila*, *P. aeruginosa* and *Strept. agalactiae* and the use of AgNPs as a new trend for combating the diseases. Moreover; the combination between both AgNPs and the most potent and widely used antibiotic (doxycycline) was used. The *in vivo* study was done and the residues of AgNPs in fish flesh were noted.

This performed by:

- 1- Obtaining a reference strain and field strains of some bacteria those causing fish diseases as *A. hydrophila*, *P. aeruginosa* and *Strept. agalactiae*.
- 2- These isolates cultured and confirmed by the different bacteriological methods.
- 3- Antimicrobial sensitivity test was done to determine the most potent antibiotic against these pathogens which revealed the common on as doxycycline.
- 4- Application of different concentrations of AgNPs *in vitro* to determine the best concentrations that achieved the MIC to bacteria. The best concentration was 50 ppm that can give better inhibition zone.
- 5- TEM was used to check the effects of AgNPs on bacterial cells and the extent of cell damage
- 6- In vivo experiment was done on a 13 groups of O. niloticus for 30 days.
- 7- Histopathological examination of fish gills and liver and muscles to find out the effects of bacteria on fish and the curative effects of antibiotics as compared with AgNPs alone or combined with doxycycline.
- 8- TEM was performed on fish flesh to detect whether AgNPs has residues in muscles after treatment and if found until when?

The result revealed that:

The results revealed that the use of AgNPs in treatment of fish diseases is very effective at the field with restriction of the withdrawal time.

- At concentration of 50 ppm of AgNPs agar well diffusion disc showed inhibitory zones of bacterial growth of the 3 bacteria species.
- Using of both AgNPs together with doxycycline *in vitro* produced a larger inhibition zone.
- The turbidity test revealed that lower turbidity upon using AgNPs.
- The effect of AgNPs on biofilm of bacteria, biofilm was reduced upon treatment as compared with normal.
- The effect of AgNPs on cell respiration was great as compared to normal groups
- The TEM test confirmed the different modes of actions of AgNPs on bacterial cells.

- The result of Challenge test revealed that the use of AgNPs or AgNPs combined with doxycycline after challenge with *A. hydrophila*, *P. aeruginosa* and *Strept. agalactiae* as compared with the positive control groups and even the groups treated with antibiotic only. Moreover, the groups that treated with both AgNPs combined with doxycycline showed no mortalities and the signs of diseases healed completely.
- The histopathology of liver, muscles and gills showed that treatment with AgNPs lead to minimal tissue damage.

In conclusion:

Recently, infections correlated with antibiotic-resistant bacteria have increased in aquaculture industry. AgNPs as antibacterial agent alone or combined with doxycycline gave an effective action against the most threatening bacteria at fish farms; *A. hydrophila*, *P. aeruginosa* and *Strept. agalactiae* whether *in vitro* or *in vivo*.