

Faculty of science Chemistry Department

The protective role of turmeric, ginger and n-acetylcysteine on heat stress

A thesis

Submitted to Faculty of Science, Port Said University for the Fulfilment Ph.D. Degree of Sci., In Chemistry (Biochemistry)

Bу

Samia EL-Sayed Ahmed Ibrahim K. Hagag

B. Sci., Al-Azhar University B. Sci., Tanta University Diploma of Physiology and Biochemistry, Suez Canal University Master degree in Biochemistry, Zagazig University Master of Business Administration, ESLSCA, Cairo

Under Supervision of

Prof. Dr.

Mohamed Samy Ahmed El-Gharib

Professor of Organic Chemistry Faculty of Science Port Said University

Prof. Dr.

Faten Zahran Mohamed

Professor of Biochemistry Faculty of Science Zagazig University

Prof. Dr.

Osama El-Said Abdalla Ramadan

Head Researcher of Pharmacology Animal Health Research Institute Agriculture Research Centre

(2021)

Table of Contents

Title	Page no.
<u>1.</u> INTRODUCTION	1
2. AIM OF THE WORK	5
<u>3.</u> REVIEW OF LITERATURE	6
<u>3.1.</u> Heat Stress:	7
<u>3.2.</u> HS and economics	9
<u>3.3.</u> Heat loss in poultry:	10
<u>3.4.</u> Heat stress in broiler chicken	11
Behavioural Changes	12
Cellular responses to HS	13
HS mechanism of action:	15
Oxidative stress:	
1.Reactive oxygen species (ROS):	
2.Reactive nitrogen species (RNS):	20
Antioxidant enzymes:	21
Heat stress and growth performance:	22
Heat stress and neuroendocrine Changes	23
Effect of heat stress on corticosterone hormone	24
Effect of HS on thyroid hormones:	25
<u>3.6.</u> Heat shock proteins:	
1. Heat shock protein 70 (HSP70):	27
2. Heat shock protein 90 alpha (HSP 90α):	
Heat shock proteins and HS:	
Mechanism of HSP expression	
<u>3.7.</u> Potential Strategies to Mitigate HS in Poultry	31
Feeding Strategies:	
<u>3.8.</u> Phytochemical Mode of action	

1-	Turmeric Rhizome	
2- G	inger Rhizome47	
3- N	-acetylcysteine(NAC):	
4. N	IATERIALS and METHODS62	
(A)	Materials:	
I.	Powders and chemicals used:	
II.	Experimental birds:	
III.	Ration and additives	
IV.	Vaccines:	
(B) I	Methods	
I) Ey	xperimental design:	
II) S	ampling:	
III) (General health and growth performance71	
IV)	Haematological studies:	
V) S	erum Biochemical analysis:73	
VI)	Quantitative real time Polymerase chain reaction (qPCR) of Hsp70	
and	Hsp90α:101	
VII)	Statistical analysis	
<u>5.</u> R	ESULTS	
A)	Clinical signs:	
B)	Mortality rate:	
C)	Effect on body weight (g):112	
D)	Effect on body weight gain (g):115	
E)	Effect on feed intake (F.I):	
F)	Effect on feed conversion ratio (F.C.R):121	
2. Ef	ffect on haematological profiles:124	
3.Determination of lipids profile parameters:		
4.	Effect on liver function 140Error! Bookmark not defined.	
5.	Effect on kidney function:	

6 .]	Effect on serum malondialdehyde and superoxide dismutase152
7.]	Effect on Triiodothyronine and Thyroxine and Corticosterone
horm	ones:155
8.	Diagnostic performance analysis of candidate biomarkers between
turme	eric and control broilers groups:158
9.	Diagnostic performance analysis of candidate biomarkers between
ginge	r and control broilers groups:164
10.	Diagnostic performance analysis of candidate biomarkers between
NAC	and control broilers groups:170
11.	Correlation between Glc, MDA, SOD, CORT, HSP70 and
HSP9	00αparameters in the studied groups:176
12.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α
paran	neters in HSC group:181
13.	Correlation between Glc, MDA, SOD, CORT, HSP70 and
HSP9	00αparameters in HST group:187
14.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α
paran	neters in HSG group:
15.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α
paran	neters in HSN group:
16.	Effect on HSP70 and HSP90 α expression in liver of chicken by
quant	itative real time PCR (qPCR):205
<u>6.</u> DI	ISCUSSION210
<u>7.</u> SU	UMMARY
<u>9.</u> CC	ONCLUSION253
<u>10.</u> R	RECOMMENDATION253
<u>11.</u> R	REFERENCES254
العربي	1

No.	Title	Page
1.	Ingredients and chemical composition of basal diet.	67
2.	Vaccination program of experimental broilers chicks	68
	Primers sequences used in determination of Heat shock	
3.	protein 70, Heat shock protein 90α and β -actin gene	106
	expression.	
4.	PCR mixture.	107
5	The thermal cycler condition used during real time PCR for	107
5.	Heat shock protein 70, Heat shock protein 90 α and β -actin.	107
6.	Effect on mortality rates of broiler chickens	111
7.	Effect on BW of broiler chickens	113
8.	Effect on BWG of broiler chickens	116
9.	Effect on F.I of broiler chickens	119
10.	Effect on F.C.R of broiler chickens	122
11.	Effect on PCV%, HGB content, total RBCs and platelets	125
12.	Effect on MCV, MCH and MCHC of broiler chickens.	128
13	Effect on leukocytic counts, Lymphocyte, heterophils and	131
1.5.	H/L ratio of broiler chickens.	101
14.	Effect on monocyte, eosinophils and basophils of broilers	133
15.	Effect on total cholesterol, Triacylglycerol and HDL-C.	136
16	Effect on LDL, VLDL and cholesterol ratio of broiler	138
10.	chickens under thermoneutral and HS condition.	150
17	Effect on, Total protein, Albumin, Globulin and A/G ratio of	141
1/.	broilers.	141
18.	Effect on AST, ALT and ALP of broiler chickens.	144

List of Tables

No.	Title	Page
19.	Effect on total bilirubin, direct bilirubin and glucose conc.	147
20.	Effect on serum uric acid and creatinine of broiler chickens.	150
21.	Effect on serum MDA and SOD of broiler chickens	153
22.	Effect on serum T3, T4 and corticosterone of broilers	156
	ROC AUC and performance characteristics of Glc and	
23.	CORT concentration for discrimination between turmeric	158
	powder and control groups.	
	ROC AUC and performance characteristics of MDA and	
24.	SOD concentration for discrimination between TRP and	160
	control groups.	
	ROC AUC and performance characteristics of HSP70 and	
25.	HSP90 α concentration for discrimination between TRP and	162
	control groups.	
	ROC AUC and performance characteristics of Glc and COR	
26.	concentration for discrimination between GP and control	164
	groups.	
	ROC AUC and performance characteristics of MDA and	
27.	SOD concentration for discrimination between GP and	166
	control groups.	
	ROC AUC and performance characteristics of HSP70 and	
28.	HSP90 α concentration for discrimination between GP and	168
	control groups.	
	ROC AUC and performance characteristics of Glc and COR	
29.	concentration for discrimination between NAC and control	170
	groups.	

No.	Title	Page
30.	ROC AUC and performance characteristics of MDA and SOD concentration for discrimination between NAC and control groups.	172
31.	ROC AUC and performance characteristics of HSP70 and HSP90 α concentration for discrimination between NAC and control groups.	174
32.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α concentration in all study's groups showing diet effect.	176
33.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α concentration in HSC group.	182
34.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90α concentration in HST group.	188
35.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α concentration in HSG group.	194
36.	Correlation between Glc, MDA, SOD, CORT, HSP70 and HSP90 α concentration in HSN group.	200
37.	Effect on relative expression of Hsp70 and HSP90 α of genes in liver of broilers.	208

List of Figures

No.	Title	Page
1.	Thermoneutral Zone diagram	7
2.	Etiology of HS induced leaky gut.	11
3.	Physiological response to HS.	13
4.	Mitochondrial energy transduction and pathophysiology of oxidative stress upon HS.	18
5.	Effect of HS on the chicken.	20
6.	Mechanism of antioxidant enzyme systems in response to HS in the chicken.	22
7.	The negative feedback response of animals to an acute stressor	25
8.	HSP induction with various stressors	29
9.	Chemical structure of compounds contained in Curcuma longa.	35
10.	Chemical structure of curcumin.	35
11.	Bioactivities of ginger	47
12.	The beneficial application of ginger and its derivatives.	48
13.	Chemical structure of important phytochemicals of ginger.	50
14.	The potential mechanism for the antioxidant action of 6-shogoal	55
15.	GSH synthesis.	57
16.	Impact of NAC on synthesis and utilization pathways for GSH.	60
17.	Curcumin (Keto-form) structure.	63
18.	Chemical structures of an active ingredients structure in ginger.	64
19.	N-Acetyl-L-cysteine structure.	65
20.	Typical standard curve for serum MDA ELISA.	89
21.	Typical standard curve for serum SOD ELISA.	92
22.	Typical standard curve for serum T3 hormone ELISA.	95
23.	Typical standard curve for serum CORT hormone ELISA.	100

No.	Title	Page
24.	Effect on mortality rate of broiler chickens	111
25.	Effect on BW of broiler chickens	114
26.	Effect on BWG of broiler chickens	117
27.	Effect on F.I of broiler chickens	120
28.	Effect on F.C.R of broiler chickens	123
29.	Effect on PCV%, HGB content, total RBCs count and platelets of broiler chickens	126
30.	Effect on MCV, MCH and MCHC of broiler chickens	129
31.	Effect on leukocytic counts, Lymphocyte, heterophils and H/L ratio broiler chickens	132
32.	Effect on monocyte, eosinophils and basophils of broilers	134
33.	Effect on total cholesterol, Triacylglycerol and HDL of broilers	137
34.	Effect of turmeric, ginger and n-acetyl cysteine on LDL-C, VLDL-C and cholesterol ratio of broiler chickens	139
35.	Effect on, total protein, Albumin, Globulin and A/G ratio of broilers	142
36.	Effect on AST, ALT and ALP of broiler chickens	145
37.	Effect on total bilirubin and direct bilirubin of broilers.	148
38.	Effect on serum uric acid and creatinine of broiler chickens	151
39.	Effect on serum MDA and SOD of broiler chickens	154
40.	Effect on serum T3and T4 of broiler chickens	157
41.	ROC curve of Glc concentration for discrimination between TRP and control groups.	159
42.	ROC curve of CORT concentration for discrimination between TRP and control groups.	159
43.	ROC curve of MDA concentration for discrimination between TRP and control groups.	161

No.	Title	Page
44.	ROC curve of SOD concentration for discrimination between TRP and control groups.	161
45.	ROC curve of HSP70 concentration for discrimination between TRP and control groups.	163
46.	ROC curve of HSP90αconcentration for discrimination between TRP and control groups.	163
47.	ROC curve of Glc concentration for discrimination between GP and control groups.	165
48.	ROC curve of CORT concentration for discrimination between GP and control groups.	165
49.	ROC curve of MDA concentration for discrimination between GP and control groups.	167
50.	ROC curve of SOD concentration for discrimination between GP and control groups.	167
51.	ROC curve of HSP70 concentration for discrimination between GP and control groups.	168
52.	ROC curve of HSP90α concentration for discrimination between GP and control groups.	168
53.	ROC curve of Glc concentration for discrimination between NAC and control groups.	171
54.	ROC curve of CORT concentration for discrimination between NAC and control groups.	171
55.	ROC curve of MDA concentration for discrimination between NAC and control groups.	173
56.	ROC curve of SOD concentration for discrimination between NAC and control groups.	173

No.	Title	Page
57.	ROC curve of HSP70 concentration for discrimination between NAC and control groups.	175
58.	ROC curve of HSP90 α concentration for discrimination between NAC and control groups.	175
59.	Correlation between Glc and HSP90a in all groups.	177
60.	Correlation between Glc and HSP70 in all groups.	177
61.	Correlation between Glc and SOD in all groups.	177
62.	Correlation between Glc and MDA in all groups.	177
63.	Correlation between MDA and HSP90 α in all groups.	178
64.	Correlation between MDA and HSP70 in all groups.	178
65.	Correlation between MDA and CORT in all groups.	178
66.	Correlation between MDA and SOD in all groups.	178
67.	Correlation between SOD and HSP70 in all groups.	179
68.	Correlation between SOD and HSP90 α in all groups.	179
69.	Correlation between CORT and HSP90a in all groups.	179
70.	Correlation between CORT and HSP70 in all groups.	179
71.	Correlation between Glc and CORT in all groups.	180
72.	Correlation between SOD and CORT in all groups.	180
73.	Correlation between HSP70 and HSP90 α in all groups.	180
74.	Correlation between Glc and HSP90a in HSC group.	183
75.	Correlation between Glc and HSP70 in HSC group.	183
76.	Correlation between Glc and SOD in HSC group.	183
77.	Correlation between Glc and MDA in HSC group.	183
78.	Correlation between MDA and HSP90 α in HSC group.	184
79.	Correlation between MDA and HSP70 in HSC group.	184
80.	Correlation between MDA and CORT in HSC group.	184
81.	Correlation between MDA and SOD in HSC group.	184

No.	Title	Page
82.	Correlation between SOD and HSP70 in HSC group.	185
83.	Correlation between SOD and HSP90a in HSC group.	185
84.	Correlation between CORT and HSP90 α in HSC group.	185
85.	Correlation between CORT and HSP70 in HSC group.	185
86.	Correlation between Glc and CORT in HSC group.	186
87.	Correlation between SOD and CORT in HSC group.	186
88.	Correlation between HSP70 and HSP90a in HSC group.	186
89.	Correlation between Glc and HSP90 α in HST group.	189
90.	Correlation between Glc and HSP70 in HST group.	189
91.	Correlation between Glc and SOD in HST group.	189
92.	Correlation between Glc and MDA in HST group.	189
93.	Correlation between MDA and HSP90 α in HST group.	190
94.	Correlation between MDA and HSP70 in HST group.	190
95.	Correlation between MDA and CORT in HST group.	190
96.	Correlation between MDA and SOD in HST group.	190
97.	Correlation between SOD and HSP70 in HST group.	191
98.	Correlation between SOD and HSP70 in HST group.	191
99.	Correlation between CORT and HSP90 α in HST group.	191
100.	Correlation between CORT and HSP70 in HST group.	191
101.	Correlation between Glc and CORT in HST group.	192
102.	Correlation between SOD and CORT in HST group.	192
103.	Correlation between HSP70 and HSP90a in HST group.	192
104.	Correlation between Glc and HSP90 α in HSG group.	195
105.	Correlation between Glc and HSP70 in HSG group.	195
106.	Correlation between Glc and SOD in HSG group.	195
107.	Correlation between Glc and MDA in HSG group.	195

No.	Title	Page
108.	Correlation between MDA and HSP90 α in HSG group.	196
109.	Correlation between MDA and HSP70 in HSG group.	196
110.	Correlation between MDA and CORT in HSG group.	196
111.	Correlation between MDA and SOD in HSG group.	196
112.	Correlation between SOD and HSP70 in HSG group.	197
113.	Correlation between SOD and HSP90 α in HSG group.	197
114.	Correlation between CORT and HSP90a in HSG group.	197
115.	Correlation between CORT and HSP70 in HSG group.	197
116.	Correlation between Glc and CORT in HSG group.	198
117.	Correlation between SOD and CORT in HSG group.	198
118.	Correlation between HSP70 and HSP90a in HSG group.	198
119.	Correlation between Glc and HSP90a in HSN group.	201
120.	Correlation between Glc and HSP70 in HSN group.	201
121.	Correlation between Glc and SOD in HSN group.	201
122.	Correlation between Glc and MDA in HSN group.	201
123.	Correlation between MDA and HSP90 α in HSN group.	202
124.	Correlation between MDA and HSP70 in HSN group.	202
125.	Correlation between MDA and CORT in HSN group.	202
126.	Correlation between MDA and SOD in HSN group.	202
127.	Correlation between SOD and HSP70 in HSN group.	203
128.	Correlation between SOD and HSP90 α in HSN group.	203
129.	Correlation between CORT and HSP90 α in HSN group.	203
130.	Correlation between CORT and HSP70 in HSN group.	203
131.	Correlation between Glc and CORT in HSN group.	204
132.	Correlation between SOD and CORT in HSN group.	204
133.	Correlation between HSP70 and HSP90 α in HSN group.	204

No.	Title	Page
	The linear (upper) and log (lower) amplification curves	
134.	representing the Ct values ofHsp70gene from broilers derived	206
	from RT-qPCR reaction.	
	The linear (upper) and log (lower) amplification curves	
135.	representing the Ct values of Hsp90agene from broilers derived	207
	from RT-qPCR reaction.	
136.	Graphical presentation of real-time quantitative PCR analysis of	200
	the expression of HSP70 and HSP90 α genes in liver tissue.	209

SUMMARY

HS causes physiological changes in broiler chickens like reduction in blood antioxidant status and increased the oxidative stress indicators. Heat exposure significantly increased the concentration of serum CORT, HSP70 and HSP90 α to help chickens coping with the damage from high temperature.

This study was carried out in summer season (August, 2018) on one hundred and sixty, apparently healthy, one-day old, unsexed broiler chicks (Cobb 500). All broilers had been obtained from El-Kahera Poultry Company, 10th of Ramadan City in Al-Sharkia governorate, Egypt.

After thorough cleaning and disinfecting, the chicks were housed in a constant environmental under hygienic measures following the guide for the care and the use of laboratory animals guide lines of the national institute of health (NIH). They were vaccinated and fed on a well-balanced ration throughout the experimental period (42 d).

On the day 21st d of age, all broilers randomly allocated in to 8 equal groups where each group contains 20 chicken and explained as follow:

A. Class 1: Thermoneutral (TN):

Non-Heat stressed birds reared under an ambient temperature of (22 \pm 4 °C) daily and relative humidity (55 \pm 3, RH) on day 21stuntil the end of the study (42 d).

- 1) **Group 1:** Thermoneutral control group (TNC) broilers were not received any supplement to the basal diet.
- Group 2: Thermoneutral turmeric group (TNT)birds were supplemented diet with turmeric powder (5 g/kg diet).

- 3) **Group 3**: Thermoneutral ginger group (TNG) birds were administered basal diet with ginger powder (7.5 g/kg diet).
- Group 4: Thermoneutral n-acetyl cysteine group (TNN) birds were administrated basal diet with antioxidant chemical n-acetyl cysteine (100mg/kg diet).

B. <u>Class 2: HS (HS)</u>:

Heat stressed (HS) birds reared under an ambient temperature $(34 \pm 2 ^{\circ}C)$ daily from 9:00 to 17:00 h. with a relative humidity 65% on day 21 until the end of the study (42 d).

1) **Group 5:** HS control (HSC) birds didn't receive any supplement to the basal diet.

2) Group 6: Heat stressed turmeric group (HST)birds administered with basal diet with turmeric powder (5 g/kg diet) with basal diet.

3) **Group 7:** Heat stressed ginger group (HSG)birds administered with ginger powder (7.5 g/kg diet).

4) **Group 8:** Heat stressed n-acetyl cysteine group (HSN)administrated with antioxidant chemical n-acetyl cysteine (100mg/kg diet) with basal diet.

Evaluation of general health and growth performance:

The clinical symptoms were recorded daily throughout the experimental period and 15 chickens from each group were weighted at the beginning of the experiment (21st day of age) then weekly weighted till the end of the study. Similarly, the diet consumed was calculated all over the study period.

Blood Samples:

After broilers' fast for 10 h., on 42 days of age, five birds from each group were selected randomly then blood samples were drawn from wing veins and divided in to 2 samples for hematological and biochemical studies.

- The first blood sample was collected in 1 test tube with stopper containing EDTA 50 I.U./ML blood as anticoagulant to measure hematological parameters.
- The second blood sample was collected in clean and dry tube with a rubber stopper left to clot then centrifuged at 2500 r. p. m for 10 minutes to allow serum separation. The clear sera were collected in dry Eppendorf tubes and then stored in deep freezer at -20°C until be used for the subsequent biochemical, MDA, SOD and hormones analysis.

Liver tissue samples:

Birds were slaughtered, liver specimens were removed and wrapped in aluminum foil and placed immediately in liquid nitrogen at -196°C for making snap freezing then stored in deep freezer at -80°C until be used for the subsequent detection of gene expression.

The obtained results showed that:

1- Clinical symptoms:

In thermoneutral condition $(22\pm 4^{\circ}C)$, all broiler chickens of control group and also diet supplemented with turmeric (0.5%), ginger (0.75%) and NAC (0.01%) groups were apparently healthy, viable or showing no clinical symptoms throughout the experimental period

In Heat stressed control group $(34 \pm 2 \text{ °C for 8 h})$, all broiler chickens were apparently lazy to reduce heat generated by activity, moving hardly towards diet to reduce feed intake spending more time drinking, lift their wings away from their bodies to reduce insulation and expose any areas of skin that have no feathers, more panting, opened mouths, moving away from other birds, Move away of block walls or into moving air streams. However, broiler chickens in Heat stressed groups $(34 \pm 2^{\circ}C \text{ for } 8 \text{ h})$ supplemented with turmeric (0.5%), ginger (0.75%) and NAC (0.01%) diet on 21st days of age displayed clinical signs which appeared after 24 to 72 hours post treatment represented by an increase of appetite, more activity, less waving wings, less panting when compared with HSC group.

2- Effect on growth performance:

It was found that addition of TP, GP and NAC in normal conditions were significantly increased (P < 0.05) the body weight (BW), body weight gain (BWG) and feed intake (FI) of broilers at all experiments' measures with non-significant effect of TNN at 35 day when compared with TNC broilers. Diet supplemented with GP was significantly decreased the F.C.R on 28, 35 and 42 d while GP and NAC have significant (P < 0.05) decrease on 42 d of the experimental period when compared with TN control group.

In HS condition, the present investigation confirmed that broilers under chronic HS had a negative effect on the growth performance of broilers. However, broilers subjected to HS and supplemented with TP (0.5%), GP (0.75%) and NAC (0.01%) of diet have significant increase on BW and BWG and FI during 28-42 d with non-significant effect on FI of TP at 35 d of age than HSC. This study demonstrated that NAC addition on diet could attenuate the adverse effects of HS. It is important to note that dietary supplementation of ginger powder has provided the best outcomes for all growth efficiency indices of broilers.

3- Effect on hematological indices:

In HS condition, the PCV, HGB and RBCs were significantly decreased when compared with thermoneutral control group. While no

significant effect on platelet during high temperature. On the other side, the turmeric and ginger dietary additives have significant increase on PCV, HGB and RBCs while NAC affected PCV significantly than HSC at 42 of age.

4- Effect on lipid profile:

High ambient temperature produced significant increase in the data of serum total cholesterol, Triacylglycerol, LDL, VLDL and cholesterol ratio while non-significant decrease in HDL at the end of the experimental period compared with thermoneutral control group.

In comparison with the results of HSC chickens, dietary treatment with the powder form of turmeric additives have significant decrease in total cholesterol, Triacylglycerol, LDL, VLDL and cholesterol ratio with non-significant increase in HDL. The addition of ginger in diet have significant decrease in total cholesterol, Triacylglycerol, LDL, VLDL and cholesterol ratio with significant increase in HDL. Diet supplementation of NAC provided significant decrease in total cholesterol, LDL and cholesterol and VLDL with non-significant decrease in total cholesterol, LDL and cholesterol and VLDL with non-significant decrease in total cholesterol, LDL and cholesterol ratio while HDL has non-significant elevation.

5- Effect on serum gglucose, liver and kidney function tests:

HS have increased concentrations of Glc significantly then improved by supplementation of TP and GP significantly. In HS condition, overall data of total protein, albumin and A/G ratio showed significant decrease while non-significant decrease in globulin parameter of HSC group when compared with thermoneutral control group. On the other side, TP and GP dietary additives have significant increase in total protein and globulin while non-significant effect on albumin and A/G ratio of broilers subjected to HS. Broilers experimentally supplemented NAC in HS environment have non-significant increase in total protein, albumin, globulin and A/G on the 42nd day of chickens age.

In HS condition, overall data of AST, ALT and ALP were significantly increased when compared with thermoneutral control group. On the other side, Broilers experimentally supplemented TP, GP and NAC as dietary additives have significant decrease in serum AST, ALT and ALP on the 42nd day of age.

HS exposed broilers have significant increase in serum T-bill and Dbill that improved by dietary inclusion of TP.

In HSC group, broilers had significant increase (P< 0.05) in uric acid and creatinine levels on day 42 of age when compared with TNC group. Broilers experimentally supplemented with turmeric powder have nosignificant decrease in uric acid and creatinine concentration than HSC group.

6- Effect on MDA and SOD:

HS significantly elevated serum MDA content with significant decrease in serum SOD activity that improved significantly with dietary supplementation of TP and GP.

7- Effect on T3, T4 and CORT hormones:

HS caused significant decrease in T3 and T4 concentrations and a significant increase in CORT when compared with TNC group. The dietary intake of TP has no significant elevation effect on T3 and T4 while provided a significant improvement of CORT hormone. Addition of GP in diet significantly increased (P < 0.05) thyroid hormones while NAC affects in T3 by a significant increase compared with HSC group. Broiler chickens subjected experimentally to HS have significant increase in CORT hormone compared with HSC broilers.

8- Effect on HSP70 and HSP90α:

In liver, HSP70 and HSP90 α were elevated in HS broilers but have been ameliorated by dietary treatments of TP, GP and NAC. Our results indicated that natural additives have a better effect in alleviation of oxidative stress than NAC.