EFFECT OF WATER QUALITY ON PRODUCTIVE AND IMMUNOLOGICAL PERFORMANCE OF LOCAL HENS IN EGYPT AND SUDAN

BY

Ali Metwally Ali Ahmed

B.Sc. (Animal Production), Fac. Agric., Cairo Univ., Egypt, 1998. Master of Animal and Poultry Nutrition - Faculty of Agriculture, Cairo University (2008)

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY THESIS IN AFRICAN STUDIES

In

Natural Resource (Animal resources)

Department of Natural Resources
Animal Resources
Animal and carnivore care
Faculty of African High Studies
Cairo University
EGYPT

CONTENTS

CONTENTS	Page
ABSTRACT	1
INTRODUCTON:	3
REVIEW OF LITERATURE	6
1. Importance of water for poultry	6
2. Risks of drinking poor water quality	8
3.Effects of a static magnetic field on water	10
4. The effect of adding chlorine and iodine and using a	18
magnetic separator	
5. Effect of treated and untreated drinking water on	21
5.1. Layer performance	21
5.2. Blood tsrait	37
5.3. Treatments water on microbiological analysis cells	45
5.4. Immune:	46
6. Economic Efficiency:	51
7. Comparison of the Sudan	55
MATERIALS AND METHODS	63
1. Experimental design	63
2. Experimental diets	64
3. Experimental birds and management	64
4. The idea of the work of the magnetic separator for metals	65
4.1. Its effect on molecules	66
4-2. Its effect on ions	66
5. Productive performance traits	67
a. Egg production	67
b. Egg weight	67
c. Feed Consumption	67
d. Feed Conversion ratio	67
e. Mortality rate	67
f. Egg quality	68
f. 1. Shape index	68
f. 2. Egg Shell Weight	68
f. 3. Egg Shell Thickness	68
f. 4. Yolk Index	68
f. 5. Albumen index	68
f. 6. Hough units	68
f. 7. Egg Yolk color	69
6. Mineral response traits	69
6.1. Calcium	70
6.2 Potassium	70
6.3. Phosphorus	70

CONTENTS	Page
6.4. Magnesium	71
6.5. Iron	71
6.6. Copper	71
6.7. Zinc	72
6.8. Sodium	72
6.9. Chloride	72
7. Immune response traits	73
8. Collection of Samples and Microbiological Analysis	74
8.1. Water Sample	74
8.2. Serial Dilution Method for the Isolation of (<i>Echarchia</i>	74
coli).	
8.3. Screening for Echarchia coli	74
8.4. Identification of Potential Isolates	75
8.5. Characterization of Identified Isolates	75
9. Economic efficiency	76
10. Statistical analysis	76
RESULTS AND DISCUSSION	77
1. Productive performance	77
1.1. Feed Intake and Feed Conversion	77
1.2.1. Egg production and egg weight	84
1.3.2 Mortality Percentage	86
1.4. Egg quality	93
1.4.1. Albumin weight	93
1.4.2. Yolk weight	94
1.4.3. Shell weight	94
1.4.4. Egg Length	95
1.4.5. Shell thickness	95
1.4.6. Yolk color	96
1.4.7. Albumen diameter	96
1.4.8. Albumen height (A. H)	96
1.4.9. Yolk diameter	97
1.4.10. Yolk height	97
2. Analysis of chemical nutrients elements in water	112
2.1. Analysis of macro chemical nutrients elements in	112
water.	
2.1.1. Calcium	112
2.1.2. Potassium	112
2.1.3. Phosphorus	112
2.1.4. Magnesium	112
2.2. Analysis of micro chemical nutrients elements in water	113
2.2.1. Iron	113

CONTENTS	Page
2.2.2. Copper	113
2.2.3. Zinc	113
2.2.4. Sodium	114
2.3. Analysis of toxic chemical nutrients elements in water	114
2.3.1. Chlorine	114
2.3.2. Cadmium	114
2.3.3. Lead	114
3. Analysis of chemical nutrients elements in serum	115
3.1. Analysis of macro chemical nutrients elements in	115
serum	
3.1.1. Calcium	115
3.1.2. Potassium	115
3.1.3. Phosphorus	116
3.1.4. Magnesium	116
3.2. Analysis of micro chemical nutrients elements in	117
serum	
4.2.1. Iron	117
4.2.2. Copper	117
4.2.3. Zinc	117
4.2.4. Sodium	118
3.3. Analysis of toxic chemical nutrients elements in serum	118
3.3.1 Chlorine	118
3.3.2. Cadmium	118
3.3.3. Lead	119
4. Treatments water on microbiological analysis cells	149
5. Treatments water on immune response	152
5.1. Treatments water on immune response in the	152
influenza (H9N1- H5N1) and newcastle (ND) titer	
5.2. Treatments water on immune globulin titer (IGg -	152
IGm and IGa)	
7. Economic efficiency	163
SUMMARY	168
REFERENCES	173
ARABIC SUMMARY	

LIST OF TABLES

No	Title	Page
1	Water quality for poultry	7
2	Divide the experiment parameters and the components of each transaction	64
3	Ingredient and chemical composition (g/kg) of the experimental diet for laying hens	65
4	Methods parameters	69
5	Effect of Water Treatments on Feed Intake (G) and Feed Conversion] (fed intake Kg / eggs kg)[four local laying hens	80
6	Effect of Water Treatments on Egg Production (%) and Egg Weight (g) and Mortality (%) four local laying hens	88
7	Effect of water treatments on albumen weight (g), yolk weight (g) and shell weight (g) four local laying hens	99
8	Effect of Water Treatments on Egg Length (Cm), Shell Thickness (Cm) and Yolk Color (H) four local laying hens	103
9	Effect of Water Treatments on Albumen Diameter (Cm), Albumen Height (Cm), Yolk Diameter (Cm) and Yolk Height (Cm) four local laying hens	107
10	Effect of Water Treatments Analysis of Macro Chemical Nutrients Elements in Water on Calcium (mg/l), Potassium (mg/l), Phosphorus (mg/l) and Magnesium (mg/l) four local laying hens	121
11	Effect of Water Treatments Analysis of Micro Chemical Nutrients Elements in Water on Iron (mg/l), Copper (mg/l) zinc (mg/l) and sodium (mg/l): four local laying hens	126
12	Effect of water Treatments Analysis of Toxic Chemical Nutrients Elements in Water Chlorine (mg/l), Cadmium (mg/l) and Lead (mg/l) four local laying hens	131
13	Effect of water Treatments Analysis of Macro Chemical Nutrients Elements in Serum On Calcium (Mg/L), Potassium (mg/l),Phosphorus (mg/l) and magnesium (mg/l) four local laying hens	135
14	Effect of water Treatments Analysis of Micro Chemical Nutrients Elements in Serum on iron (mg/l), Copper (mg/l), zinc (mg/l) and Sodium (mg/l) four local laying hens	140

No	Title	Page
15	Effect of the Treatments Water Analysis of Toxic Chemical	145
	Nutrients Elements in Serum on Chlorine (mg/l), Cadmium	
	(mg/l) and Lead (mg/l): four local laying hens	
16	Effect of The Treatments Water on Microbiological	150
	Analysis Cells: four local laying hens	
17	Effect of Water Treatments Analysis of Avian Influenza	155
	and Newcastle Titers (T) four local laying hens	
18	Effect of Water Treatments Analysis of Immune Globulin	159
	Titers (T) four local laying hens	
19	Effect of Water Treatments on Economic Efficiency. Four	166
	local laying hens	

LIST OF FIGURES

No	Title	Page
1	Effect of Water Treatments on Feed Intake (kg) in the	81
	first period)	
2	Effect of Water Treatments on Feed Intake (kg)in the	81
	second period	
3	Effect of Water Treatments on Feed Intake (kg) in the	82
	third period	
4	Effect of Water Treatments on Feed Intake (kg) in the	82
	Overall period	
5	Effect of Water Treatments on Feed Conversion] (feed	82
	intake kg / eggs kg) in the first period	
6	Effect of Water Treatments on Feed Conversion] (feed intake kg /	82
	eggs kg) in the second period	
7	Effect of Water Treatments on Feed Conversion] (feed	83
	intake kg / eggs kg) in the third period	
8	Effect of Water Treatments on Feed Conversion] (feed	83
	intake kg / eggs kg) in the Overall period	
9	Effect of Water Treatments on Egg Production (%)in the	89
	first period	
10	Effect of Water Treatments on Egg Production (%)in the	89
	second period	
11	Effect of Water Treatments on Egg Production (%) in	90
	the third period	
12	Effect of Water Treatments on Egg Production (%)in the	89
	Overall period	
13	Effect of Water Treatments on Egg Weight (g)	91
14	Effect of Water Treatments on Mortality (%)	92
15	Effect of water treatments on albumen weight (g)	100
16	Effect of water treatments on yolk weight (g)	101
17	Effect of water treatments on shell weight (g)	102
18	Effect of water treatments on egg length (Cm)	104
19	Effect of water treatments on shell thickness (Cm)	105
20	Effect of water treatments on yolk color (H)	106
21	Effect of water treatments on albumen diameter (Cm)	108
22	Effect of water treatments on albumen height (Cm)	109
23	Effect of water treatments on yolk diameter (Cm)	110
24	Effect of water treatments on yolk height (Cm)	111
25	Effect of Water Treatments Analysis of Macro Chemical	122
	Nutrients Elements in Water on Calcium (mg/l)	
26	Effect of Water Treatments Analysis of Macro Chemical	123
	Nutrients Elements in Water on Potassium (mg/l)	

No	Title	Page
27	Effect of Water Treatments Analysis of Macro Chemical	124
	Nutrients Elements in Water on Phosphorus (mg/l)	
28	Effect of Water Treatments Analysis of Macro Chemical	125
	Nutrients Elements in Water on Magnesium (mg/l)	
29	Effect of Water Treatments Analysis of Micro Chemical	127
	Nutrients Elements in Water on Iron (mg/l)	
30	Effect of Water Treatments Analysis of Micro Chemical	128
	Nutrients Elements in Water on Copper (mg/l)	
31	Effect of Water Treatments Analysis of Micro Chemical	129
	Nutrients Elements in Water on Zinc (mg/l)	
32	Effect of Water Treatments Analysis of Micro Chemical	130
	Nutrients Elements in Water on Sodium (mg/l)	
33	Effect of Water Treatments Analysis of Toxic Chemical	132
	Nutrients Elements in Water Chlorine (mg/l)	
34	Effect of Water Treatments Analysis of Toxic Chemical	133
	Nutrients Elements in Water Cadmium (mg/l)	
35	Effect of Water Treatments Analysis of Toxic Chemical	134
	Nutrients Elements in Water Lead (mg/l)	
36	Effect of Water Treatments Analysis of Macro Chemical	136
	Nutrients Elements in Serum on Calcium (mg/l)	
37	Effect of Water Treatments Analysis of Macro Chemical	137
	Nutrients Elements in Serum on Potassium (mg/l)	
38	Effect of Water Treatments Analysis of Macro Chemical	138
	Nutrients Elements in Serum on Phosphorus (mg/l)	
39	Effect of Water Treatments Analysis of Macro Chemical	139
4.0	Nutrients Elements In Serum on Magnesium (mg/l)	
40	Effect of Water Treatments Analysis of Micro Chemical	141
44	Nutrients Elements in Serum on Iron (mg/l)	1.10
41	Effect of Water Treatments Analysis of Micro Chemical	142
40	Nutrients Elements in Serum on Copper (mg/l)	1.40
42	Effect of Water Treatments Analysis of Micro Chemical	143
42	Nutrients Elements in Serum on Zinc (mg/l)	1 1 1
43	Effect of Water Treatments Analysis of Micro Chemical	144
11	Nutrients Elements in Serum on Sodium (mg/l)	146
44	Effect of Water Treatments Analysis of Toxic Chemical	140
45	Nutrients Elements in Serum on Chlorine (mg/l) Effect of Water Treatments Analysis of Toxic Chemical	147
43	•	14/
46	Nutrients Elements in Serum on Cadmium (mg/l) Effect of Water Treatments Analysis of Toxic Chemical	148
TU	Nutrients Elements in Serum on Lead (mg/l)	140
47	Effect of Water Treatments on Microbiological Analysis	151
- 7	Cells	

No	Title	Page
48	Effect of Water Treatments Analysis of Avian Influenza	156
	Titer (T)(H9N1)	
49	Effect of Water Treatments Analysis of Avian Influenza	157
	Titer (T)(H5N1)	
50	Effect of Water Treatments Analysis of Immune	158
	Globulin Titer (T)	
51	Effect of Water Treatments Analysis of Immune	160
	Globulin Titer (T)(IGg)	
52	Effect of Water Treatments Analysis of Immune	161
	Globulin Titer (T)(IGm)	
53	Effect of Water treatments Analysis of immune globulin	162
	titer (T)(IGa)	
54	Effect of treatments on relative economic efficiency	167
	Treatments water (T1, 28	

Terminology

(OH-)	Hydroxyl
(WTC)	Water Treatment Control
(MTW)	Magnetically Treated Water
(WC)	Water Consumption
(WFCR)	Water and Feed Consumption Ratio
(GP)	Garlic Powder
(EW g)	Egg Weight g
(EP)	Egg Production
(BW)	Body Weight
(FI)	Feed Intake
(FC)	Feed Consumption
(A.W)	Albumen Weight
(E.S.W)	Egg shell Weight
(Y.W)	Yolk Weight
(EL)	Egg Length
(E.ST)	Egg Shell Thickness
(AI)	Albumen Index
(YI)	Yolk Index
(YD)	Yolk Diameter
(Sh I)	Shape Index
(HU)	Hough Units
(E.YC)	Egg Yolk Color
(AD)	Albumen Diameter
(KCL)	Potassium Chloride
(SW)	Saline Water
(EN)	Egg Number
(EM)	Egg Mas
(FC)	Feed Consumption
(RBC 's)	Red Blood Cell Count
(Hgb)	Hemoglobin
(MR)	Mortality Rate Percentages
(DBWG)	Deed body Weight Gain
(TBWG)	Total body Weight Gain
(nd)	Not Detected

Student's name: Ali Metwally Ail Ahmed El deeb

Degree: Doctorate

Thesis title: The effect of water on the productive and immune performance of

domestic laying hens in Egypt and Sudan

Supervisors: Prof. Dr.: Wafa Zaki Azar Mikhail

Prof. Dr. Essam Fouad Abdel-Hamid

Department: Natural Resources **Branch:** Animal Resources **Degree Awarded:** /

Abstract:

This experiment was conducted to study the water provided to chickens on the yield of productive performance, the rate of feed consumption and the feed conversion factor. While assessing the effect on the immune response of birds, studying the effect of adding chlorine and iodine and using a magnetic separator for minerals in treating water pollution and the effect on production efficiency.

For this purpose, 320 chickens of the Egyptian Fayoumi strain were divided at the age of 24 weeks during a trial period from 24 weeks to 48 weeks. The birds were divided into eight groups, each group of 40 hens.

The transactions were:

- 1- Water without additives
- 2- Water with the addition of chlorine 1 cm / liter
- 3- Water with the addition of iodine (name / liter)
- 4- Water with the addition of chlorine 1 cm / liter and iodine (name / liter)
- 5- Water with the use of a magnetic separation device for minerals
- 6- Water with the use of a magnetic separator for minerals with the addition of chlorine 1 cm / liter
- 7- Water with the use of a magnetic separation device for minerals with the addition of iodine (name / liter)
- 8- Water with the use of a magnetic separator for minerals with the addition of chlorine 1 cm / liter and the addition of iodine (name / liter)

For a period of six months, it was divided into three periods each two months (8 weeks).

The results obtained showed the following:

- 1) The treatment of water with chlorine 1 cm / liter and iodine 1 cm / liter with the use of magnetic separator for metals throughout the period of the experiment had an effect on food intake (FI) compared to the control group. A group of chickens (Treatment 8) consumed less feed (P 0.05) than the control group (comparison) and it was better in feed conversion factor.
- 2) Supplying chickens with drinking water (Group 8) improved egg production (EP% significantly ($P \le 0.05$) throughout the entire trial period (24-48 weeks) compared to the control group, there was no difference in egg weight (EWg) except (Group 5,8) that was significantly higher ($P \le 0.05$) than the others.
- 3) During the use of drinking water treatments, the different experimental periods, especially in groups (5 and 8), showed a lower mortality rate compared to the control

group.

- 4) There is an improvement in most egg quality characteristics (egg weight (AW), yolk weight YW)) egg shell weight SW)), (EL), (ST), (AD), (YD), (YH) when using water Drink with 1% chlorine and 1% iodine while using a magnetic mineral separation device throughout the experiment.
- 5) The groups of drinking water treatments 1% chlorine and 1% iodine with the use of magnetic mineral separation device recorded a significant decrease (P 0.05) of the water content values of microbiological analysis cells (E. coli) compared with the control group.
- 6) The immunity of chickens that drink water containing chlorine (name / liter) iodine (name / liter) with magnetic water improved significantly ($P \le 0.05$) by examining the immunity titers of birds (H9N1-H5N1) and Newcastle (ND) compared to the control group. While the differences between experimental drinking water and control in immunoglobulin standard (IGg IGm and IGa) were significantly higher ($P \le 0.05$) except for (Group 2) in (IGg) between different experiments of treatments.
- 7) The highest economic efficiency was recorded for water treatments using 1% chlorine and 1% iodine with magnetic separator

recommendation:

It can be recommended to add chlorine (name / liter) and add iodine (name / liter) with the use of magnetic separator device for treating drinking water for chicken (group 8) to obtain the best production performance, immunity and economic efficiency.