

Menoufia University Faculty of Agriculture Department of Agricultural Engineering and Biosystem

The effect of drying on quality properties of onion by using microwave oven and solar dryer

By

Basma Hussien Mohamed Abd El-Maksoud

B.Sc Agric. Engineering 2012.

Thesis Submitted in Partial Fulfillment of The Requirements for the Degree

Of

Master Degree

In Agricultural Sciences (Agricultural Engineering)

Department of Agricultural Engineering and Biosystem Faculty of Agriculture Menoufia University Shebin El-Kom

Egypt

2021

ABSTRACT

The experiments were carried out at Agriculture and Biosystems Engineering Department, Faculty of Agriculture Menoufia University and the center laboratory of Agricultural Research Institute, Agricultural Research center, Dokki, Giza, Egypt to study effect of drying on quality properties of onion using microwave and solar dryer at 2018. The experimental treatments included three different levels of microwave power (320, 480, and 640 Watt), three different onion slices thickness (2, 4, and 6 mm). Direct solar drying includes three different levels of onion thickness (2, 4 and 6 mm). The best treatment were found for microwave dryer was identified at treatment of 640W (6mm), where, (H°) value was 19°,considered the best method of drying onion because it was given the lowest value of total color change.

ABSTRACT

The experiments were carried out at Agriculture and Biosystems Engineering Department, Faculty of Agriculture Menoufia University and the center laboratory of Agricultural Research Institute, Agricultural Research center, Dokki, Giza, Egypt to study effect of drying on quality properties of onion using microwave and solar dryer at 2018. The experimental treatments included three different levels of microwave power (320, 480, and 640 Watt), three different onion slices thickness (2, 4, and 6 mm). Direct solar drying includes three different levels of onion thickness (2, 4 and 6 mm). The best treatment were found for microwave dryer was identified at treatment of 640W (6mm), where, (H°) value was 19°,considered the best method of drying onion because it was given the lowest value of total color change.

CONTENTS

1. INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1. Onion importance	3
2.2. Importance and Principles of drying process	4
2.3. Classification of drying Methods	9
2.3.1 Natural drying (sun drying):	10
2.3.2. Solar drying	12
2.3.2.1. Classification of solar drying	14
2.3.2.1.1 Direct solar drying	16
2.3.2.1.2. Indirect solar drying	17
2.3.3 Artificial drying	18
2.3.3.1 Microwave oven	18
2.3.3.2 Hot air drying oven	19
2.3.3.3Infrared drying	20
2.4 Factors affecting the performance of drying process	22
2.5 Effects of drying on quality of fruits and vegetables:	24
2.6 Thin Layer Models for Crop Drying	25
2.7 Onion drying	28
MATERIALS AND METHODS	32
3.1.Materials	32
3.1.1.Tested crop	32
3.2. Equipments	32
3.2.1. Direct solar drying system	32
a-Solar collector (air heater):	33
b-Drying chamber :-	34
c-Drying trays :	34
d-Chimney :	35
3.2.2. Microwave oven drying:	36
3.3. Experimental treatments:	36

Two drying methods for onion:	37
3.4. Experimental procedures:	37
Solar drying method:	37
Microwave drying method:	37
3.5. Measurements:	37
3.5.1. Moisture content of onion.	37
3.5.2.Weight measurement	38
3.5.3. Drying rate:	38
3.5.4.Temperature and relative humidity:	39
3.5.5. Solar Radiation -:	40
3.6. Examined drying models for simulating the drying data.	40
3.6.1. Lewis model	40
3.6.2. Henderson and pabis model	41
3.7. Final product quality	41
3.7.1. Surface color measurements	41
3.7.2. Rehydration ratio	42
RESULTS AND DISCUSSIONS	43
4.1. Direct solar drying process	43
4.1.1. Direct solar radiation (SR) related to solar drying period	43
4.1.2. The ambient temperature related to solar drying period	43
4.1.3. Air relative humidity as related to day time drying of onion slices.	45
4.1.4. Effect of direct solar drying system on onion moisture content.	46
4.1.5 Effect of direct solar drying system on onion slices moisture ratio.	47
4.1.6 Effect of direct solar drying system on onion slices drying rate.	47
4.2. Microwave drying process.	48
4.2.1. The effect of thickness and power levels of the microwave on onion moisture content	48

Ξ

CONTENTS

4.2.1.1. Analysis of onion slices drying using Lewis's equation.	50
4.2.1.1.1. Calculation of drying constant (kL) for Lewis's equation.	50
4.2.1.2. Analysis of onion slices drying of using Henderson and pabis equation.	56
4.2.1.2.1. Calculation of drying constants (Kh, A) for Henderson and pabis equation.	56
4.2.1.2.2. Drying constant (A)	62
4.2.1.3. Fitting curve examining the applicability of Lewis and Henderson and pabis models in simulating the laboratory drying data.	65
4.2.1.3.1. Lewis model	65
4.2.1.3.2. Henderson and pabis model	66
4.3. Quality of onion drying	68
4.3.1. Color of onion drying	69
4.3.2. Rehydration of onion drying	69
5. SUMMARY AND CONCLUSION	73
6. REFERENCES	78
الملخص العربي	١

Ξ

LIST O	F TABLES
--------	----------

Ξ

_

Table (3.1): Specifications of Microwave oven drier	35
Table (4.1) Drying time and drying rate of various onion slices thickness	48
Table (4.2): Drying constant (KL) for Lewis equation at differentlevels of microwave power and Thickness of slices.	50
Table (4.3): Constants of equation and the coefficient of determination of equation (4.1)	55
Table (4.4): Constants of equation and the coefficient of determination of equation (4.2)	56
Table (4.5): Drying constant (Kh) for Henderson and pabis equation levels of microwave power and thickness of slices.	56
Table (4.6): Constants of equation and the coefficient of determination of equation (4.4) relating to the change in microwave power with the drying constant (kh)	60
Table (4.7): Constants of equation and the coefficient of determination of equation (4.5) relating the change in slices of thickness with the drying constant (kh)	62
Table (4.8): The calculated drying constant (A) of equation (3.6).	63
Table (4.9): constants of equation (4.6) and it's coefficient of determination, of relating to change in microwave power with the drying constant (A).	64
Table (4.10): constants of equation (4.7) and it's coefficient of determination relating to change in slices of thickness with the drying constant (A)	65
Table (4.13) Color analysis for fresh and dried onion slices samples.	69

LIST OF FIGURES

Fig. (3.1): Direct solar drying system	33
Fig. (3.2): Schematic diagram of direct solar drying system (Dim. In cm)	34
Fig. 3.3: Microwave oven	35
Fig (3.4): Sketch (flow chart) of the studied experimental treatments and Instrumentation.	36
Fig.3.5: Digital balance	38
Fig. 3.6: A Rotronic Instrument measure (Humidity and temperature).	39
Fig .3.7: Solar power meter	40
Fig.3.8. Color meter	42
Figure (4.1) Average solar radiation as related to day time drying of onion slices.	43
Figure (4.2 a, b and c) Inlet air temperature, Outlet air temperature and Temperature in dryer chamber of the direct solar dryer.	44
Figure (4.3 a, b) Average relative humidity as related to day time drying of onion slices and the relationship with ambient relative humidity and relative humidity in solar dryer.	45
Figure (4.4) Effect of direct solar drying system on onion moisture content	46
Figure (4.5) Effect of direct solar drying system on onion moisture ratio.	47
Figure (4.6) Effect of direct solar drying system on onion drying rate	47
Figure (4.7 a, b and c)) onion slices moisture content as related to drying time at different thickness of slices and levels of microwave power.	49
Figure (4.8 a, b and c):The relationship between time (min) and MR to determination the (KL) constant of Lewis equation at the maximum power of 640 W and different thickness.	51

Figure (4.9 a, b and c): The relationship between time (min) and MR to determination the (KL) constant of Lewis equation at the maximum power of 480W and different thickness.	52
Figure (4.10 a, b and c): The relationship between time (min) and MR to determination the (KL) constant of Lewis equation at the maximum power of 330W and different thickness.	53
Figure (4.11) Relationship between the microwave power (p) and the drying constant (KL) at different thickness of slices (Th)	54
Figure (4.12) Relationship between the slices of thickness (Th) and the drying constant (KL) at different levels of microwave power (p)	55
Figure (4.13 a, b and c): The relationship between time (min) and MR(%) to determination the drying constant (Kh) of Henderson and pabis equation at microwave power of 640 W and different thickness.	57
Figure (4.14 a, b and c): The relationship between time (min) and MR to determination the drying constant (Kh) of Henderson and pabis equation at microwave power of 480 W and different thickness.	58
Figure (4.15 a, b and c): The relationship between time (min) and MR to determination the drying constant (Kh) of Henderson and pabis equation at microwave power of 320W and different thickness.	59
Figure (4.16) Relationship between the microwave power (p) and the drying constant (Kh) at different thickness of slices (Th)	61
Figure (4.17) Relationship between the slices of thickness and the drying constant (Kh) at different levels of microwave power (p)	62
Figure (4.18): Relationship between the microwave power (p) and the drying constant (A) at different levels of the slices of thickness (Th)	63

Ξ

Figure (4.19): Relationship between the slices of thickness (Th) and the drying constant (A) at different levels of microwave power (p)	65
Figure (4.20): Measured and predicted values of onion moisture content using Lewis model at thickness (2mm) and power (320)	66
Figure (4.21): Measured and predicted values of onion moisture content using Lewis model at thickness (2mm) and power (480w)	66
Figure (4.22): Measured and predicted values of onion moisture content using Henderson and pabis model at thickness (6mm) and power (640W)	66
Figure (4.23): Measured and predicted values of onion moisture content using Henderson and pabis model at thickness (2mm) and power (480W).	67
Figure (4.24) Effect of different slices thickness on the hue angle at levels of microwave power by microwave oven.	72
Figure (4.25) Effect of different slices thickness on the hue angle of dried onion slices by solar dryer.	72
Figure (4.26) Effect of different slices thickness on the rehydration ratio of onion slices dried at levels of microwave power by microwave oven.	73
Figure (4.27) Effect of different slices thickness on the rehydration ratio of dried onion slices by solar dryer.	74