Kafrelsheikh University Faculty of Veterinary Medecine Department of parasitology

Morphobiological and molecular studies on some helminth parasites of cats

Thesis presented

Bу

Naema Mohammed Abo El-Fetouh Marey (B.V.Sc., Kafrelsheikh University 2007; M.V.Sc., Kafrelsheikh University, 2016)

For

The Degree of Ph.D in Veterinary Medical Sciences (Parasitology)

Under supervision of

Dr. Mahmoud A. EL-Seify

Professor and Chairman of Parasitology Department, Faculty of Veterinary Medicine, Kafrelsheikh University.

Dr. Nagwa Mohammed Kandel Hassan

Assistant professor of Parasitology, Faculty of Veterinary Medicine, Kafrelsheikh University

Dr. Neveen Salah Satour

Senior researcher of Parasitology, of Animal Health Research Institute, Alexanderia

Submitted To Kafrelsheikh University Faculty of Veterinary Medicine (Parasitology Department)

2021

CONTENTS

Page

INTRODUCTION	1
REVIEW OF LITERATURES	4
1. Prevalence of gastro intestinal helminth parasites	4
2- Biological experimental work	7
2- a- Biological studies on digenetic trematodes	7
2- b-Biological studies of <i>Toxocara cati</i>	8
3- Molecular studies of <i>Toxocara cati</i>	11
MATERIAL AND METHODS	13
I. Ethical considerations	13
II. Cat sampling and study area	13
III. Laboratory investigations	13
IV . Examination of collected cat for gastrointestinal helminthes.	13
1- Morphological identification of gastrointestinal helminthes	15
2- Biological experimental work	15
2- a: Experimental studies on Heterophyid worms in cats fed on fish encysted metacerceria	15
2- b: Studying migratory pattern and histopathological changes of <i>Toxocara cati</i> on experimentally infected rats	18
3- PCR (molecular identification and genetic analysis of <i>Toxocara cati</i>	20

Page

RESULTS	31
1- Prevalence and identification of gastro intestinal helminth	
paras	31
2- Biological experimental work	47
2- A: Biological studies on digenetic trematodes: Cats (Felis	
catus as potential reservoir for the zoonotic trematode	
(HeterophyIdae) in Egypt	47
2-B: Biological studies of <i>Toxocara cati</i> (Migratory pattern	
and histopathological changes of Toxocara cati	
through experimental infection in rats	54
3- Molecular studies of <i>Toxocara cati</i>	62
DISCUSSION	65
SUMMARY	77
Conclusion and Recommendation	78
REFERENCES	80
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

·		1	[
ES	esophagus	Α	anus	
CA	caudal appendage	AC	acetabulum	
VGS	ventro genital sac	Alex.	Alexandria	
Ε	eggs	BC	buccal cavity	
С	caecum	BT	Bicuspid teeth	
ТН	taenoid hooks	CAL	cervical alae	
VSPH	vaginal sphincter	CI	Confidence inteval	
DPX	Distrene,Plastitiser,Xylene	CL	claspers	
VS	ventral sucker	DPI	Day post infection	
HFO	hold fast organ	EMC	Encysted metacerceria	
OLM	ocular larval migrans	EMC	eosinophilic meningiocephalitis	
EP	egg packet	EO	excretory opening	
Т	testes	EXB	excretory bladder	
RH	rostellar hooks	EXCP	excretory pore	
GP	genital pore	EXP	expulsor	
EXC	excretory canal	FBT	Food born trematodes	
UB	uterine branches	FP	finger like process	
SU	suckers	GIT	Gastrointestinal tract	
OS	oral sucker	L	lips	
GS	genital sucker	Lab	laboratory	
RTH	rose thorn hooks	MS	male spicules	
SV	seminal vesicle	P.M	Post mortem	
VLM	visceral larval migrans	PCR	polymerase chain reaction	
CS	cirrus sac	P-P	Pedunculated papailla	
0	ovary	S	spines	
Р	pharynx	TE	tail end	
EC	egg capsule	ТО	tribocytic organ	
VG	vitelline glands	ТР	Total prevalence	
R	rostellum	U	uterus	
PP	pre pharynx	V	vulva	
VD	vas deference	VGC	ventro genital complex	
HE	hexacanth embryo	VO	vulvar opening	

LIST OF PLATES & FIGURES

Plates & Figures	Page
Morphology and identification of the detected parasites:	
Trematodes:	40
Plate 1. A&B Mesostephanus dottrensi and Mesostephanus	40
appendiculatus	40
Plate 2. A&B <i>Prohistomum vivax</i> and <i>Heterophyes equalis</i> .	40
Plate 3. A&B <i>Heterophyes heterophyes</i> and <i>Heterophyes dispar</i> .	41
Plate 4. A&B. Haplorchis yokogawai.	41
Plate 5. A&B Haplorchis taichui and Haplorchis pumilio.	42
Plate 6. A&B Dexiogonimus ciureanus and Pygidiopsis geneta	42
Plate 7. A&B Stellantchasmus falcatus	43
Plate 8. A,B &C Echinochasmus perfoliatus	43
Cestodes	44
Plate 9. A, B, C, D, &E. Dipylidium caninum	44
Plate 10. A, B, C, D, & E. Joyeuxiella pasqualei	44
Plate 11. A, B, C, D, & E. Diplopylidium acanthotetra	44
Nematodes	45
Plate 12. A, B, &C. Toxocara cati	45
Plate 13. A, B, C, D, &E. Toxascaris leonine	45
Plate 14. A, B, C, &D. physallopetra gemina	46
Results of biological study of trematodes (heterophyidae):	52
Plate 15. A, B, C, D, E, F, G, & H. Morphology of detected EMC.	52
Plate 16. A, B, C: Heterophyes heterophyes and Heterophyes dispar	52
Plate 17. D, E,&F show Haplorchis taichiue, Pygidiopsis genata and Prohistomum vivax.	53
Plate 18. G&H show Procerum varium and Centrocestus cuspidatus	53

Plates & Figures	Page
Results of biological study on zoonotic nematode (Toxocara cati):	57
Plate 19: A, B, C, D, E, F, G, &H. Stages of embryonation of <i>T. cati</i>	57
Plate 20. A&B. Histoptahological picture of larva detected in the	
tissue.	58
Plate 21. A, B, C, D, E & F. Histoptahological pictures of intestines	
of experimentally infected rats by Toxocara cati.	58
Plate 22: Histoptahological picture of lungs rats experimentally	
infected by Toxocara cati.	59
Plate 23: Histoptahological picture of livers of experimentally	
infected rat by Toxocara cati.	60
Plate 24: Histoptahological picture of hearts of rats experimentally	
infected by Toxocara cati.	60
Plate 25: Histoptahological picture of kidneys of rats	
experimentally infected by Toxocara cati.	61
Plate 26: Histoptahological picture of brains of rats experimentally	
infected by Toxocara cati.	61

Figures	Page
Fig. 1: Histopathological changes in intestine of experimental	54
infected cats by EMC of Heterophyidae.	
Fig. 2. Agar gel electrophoresis show a positive band of 370 base	
pair.	63
Fig. 3. Phylogenetic tree of represented parasite.	63
Fig. 4. Gen sequenence of tested nematode strain	64

Diagram	Page
Diagram (1). Seasonal prevalence of GIT helminth parasites of	
stray cats (trematodes, cestodes, and nematodes) in	
examined stray cats in Alexandria city, Egypt (n=100).	35

LIST OF TABLES

Tables	Page
Table 1. Prevalence of helminth parasites revealed from examined	
cats in Alexandria city (n=100).	33
Table 2. Prevalence of single and mixed infections with	
gastrointestinal helminthes of examined stray cats in	
Alexandria city, Egypt (n=100).	34
Table (3): Seasonal prevalence of GIT helminth parasites of stray	
cats (trematodes, cestodes, and nematodes) in examined	
stray cats in Alexandria city, Egypt (n=100).	34
Table (4): Toxocara cati infected stray cats according to age, and	
sex in Alex. City in post mortem examination (n=100).	34
Table(5): Prevalence of different species of microscopic EMC in	
examined 100 Oreochromus niloticus in the current study	
from Alexandria, Egypt.	50
Table (6):- Pattern of infection of EMC in Oreochromus niloticus.	51
Table (7):- Density of microscopic EMC in different parts of	
Oreochromus	51
Table (8):- Seasonal dynamics of EMC of Oreochromus niloticus.	51
Table (9):-Comparison between infection of EMC in cats and	
albino rats.	51
Table (10): Migratory pattern and larvae recovery rate of Toxaocara	
<i>cati</i> as detected in the experimentally infected rats.	57

SUMMARY

Cats are widespread animals everywhere, stray one became numerous in the streets of Egypt, living nearby human dwelling, abattoirs, gardens, and on animal farms. The need to a lot of information is required about the parasites and diseases they harbor, and the threat that may pose to humans, pets and farm animals.

This study was conducted from Jan. 2018 to Jan. 2019 on 100 cats, were trapped from different regions in Alexandria city. In the laboratory; humanely killing to the cats, viscera and GIT examined for helminthes.

The overall prevalence of gastrointestinal parasites infection was 80%. The established parasites in postmortem examination consisted of 12 species of trematodes; *Heterophids* spp., were 20% and included on *Heterophyes heterophyes* with 10%, *Heterophyes dispar* was 5%, *Heterophyes equalis* was 3%, *Haplorchis yokogawai* was 5%, *Haplorchis pumillo* was 5%, *Haplorchis taichu* was 4%, *pygidiopsis geneta* was 5%, *Stellantchasmus falcatus* 3%, *Dexiogonimus ciureanus* 1%, *Mesostephanus spp.* was 6%, *Prohistomum spp.* was 2%, *Echinochasmus perfoliatus* was 4%,. 3 species of cestodes; *Dipylidium caninum* was 60%, *Joyeuxiella spp.* was 4%, *Diplopylidium spp.* was 4%. 3 species of nematodes; *Toxocara cati* was 40%, *Toxascaris leonine* was 7%, *Physaloptera spp* 1%.

This study proved that cats act as reservoirs for many parasites of zoonotic importance e.g. intestinal trematodiasis due to all trematodes which were recorded in this study are transmitted by eating row or ill-cooked fish and most of them have been reported in humans causing health problems and may represent emerging disease according to **Keiser and Utzinger (2005)** and cats act as final host for food born

trematodes. Also the current study reports a high prevalence of EMC in edible Tilapia fish in Alexandria, Egypt. Moreover, half of these EMC were for *Heterophyes* spp.

Dipylidium caninum and *Toxocara cati* are the most importance zoonotic parasites which detected in high prevalence.

Another deep biological studies on Heterophyid worms in cats fed on fish encysted metacerceria and detection of resulted adult worms and its prevalence.

Biological experimental study on *Toxocara cati* in experimental animals to detect migratory patterns and histopathological changes inside its tissues.

Further molecular studies on some isolates of *Toxocara cati* to detect gen sequencing, phylogenetic analysis, and gen distribution within other types around the world through gen bank.

Conclusion and Recommendations:

Results of this study showed that 80% of stray cats were infected with at least one zoonotic parasite and provided with important information about the prevalence and the kind of parasites present in free roaming cats in Alexandria city. The high prevalence of EMC in edible Tilapia fish in Alexandria, Egypt were *Heterophyes* spp, the serious zoonotic digenetic trematode

From the veterinary and medical points of view, stray cats represent potential sources of disease therefore, care must be taken to diminish the risk of infection to animals and human beings especially children mainly the zoonotic character of some parasites found in this study must serve as an alert to public health agencies, veterinarians and pet owners, especially when data from approximately 40 years ago according to Langenegger and Lanzieri (1963) show that cats, although infected in different intensities, are still parasitized by the same species despite of the availability of new chemo prophylactic protocols.

Veterinarians and Physicians in practice are often the best and only source of information about increasing the level of awareness of feline zoonotic parasites for pet owners. Examining household cats regularly for parasitic infection and preventing stray cats to access to animal farms.

Education has an important role in reducing the prevalence of infections mainly health education and control programs for fish-borne zoonotic parasites.

Methods for prevention and control of the parasites be implanted and executed in order to reduce the environmental contamination with infective eggs and larvae e.g. pick up and disposal of pet feces.

Optimal care must be taken to diminish the risk of pest infection to animals and humans by undertake appropriately timed preventive anthelmintic and pest medications.