Fayoum University Faculty of Science Botany Department Microbiology Division

Fungal Xylanase production by using agricultural and industrial wastes

By

Marwa Hamdy Mahmoud Abd Elaziz

A thesis submitted in partial fulfillment

Of

The requirement for the degree of

Ph.D of Science

In

(Microbiology)

Botany Department

Faculty of Science - Fayoum

FAYOUM UNIVERSITY

2021

Abstract

The experiments were conducted to obtain xylanase enzyme from the two fungi strains *Aspergillus niger* strain *AUMC 14230* by using corn cob as main component in fermentation media. The experiments were carried out in the laboratory of Soil, Water and Environmental Instituted, Giza Egypt. To achieve this target the following procedures will adopted: Several agricultural wastes especially corn cob were used as a raw material to isolate microorganisms with capabilities to decompose the raw material cellulose. The isolated microorganisms were purified and screened for the cellulose degradation and for the production of the xylanase enzyme. Fungal strain was selected that showed strong cellulose degradation and high xylanase enzyme production. The fungal strain was identified to species level. Nutritional and environmental condition for the xylanase enzyme was precipitated and purified.

Contents

1. Introduction	3
2. Review Of Literature	9
2.1. Nutri onal requirements	12
2.1.1 Carbon source	12
2.1.2 Nitrogen source	17
2.2. Culture medium and fermentation	21
2.3. Environmental condi ons	26
2.4. Enzyme assay	28
2.5. Purification	33
3. Material And Methods	43
3.1. Raw materials	44
3.2. Pretreatment of raw materials	45
3.2.1 Pretreatment of rice straw	45
3.2.1.1 Alkali Pretreatment	45
3.2.1.2 Heat Pretreatment	45
3.2.2 Alkali Pretreatment of corn cobs	45
3.2.3 Alkali Pretreatment of sugar cane bagasse	46
3.2.4 Alkali Pretreatment of corn stalks	46
3.3. Fungi used	46
3.4. Isolation, screening and identification	46
3.5. Submerged fermenta on experiment	48

3.6. Media used	49
3.7. Effect of nutritional requirements	
3.7.1. Carbon sources	51
3.7.2. Nitrogen sources	
3.7.3 Effect of culture medium components	52
3.8. Environmental condi ons	53
3.8.1 Inoculum size	53
3.8.2. Ini al pH	53
3.8.3 Aera on rate	53
3.8.4. Incubation temperature	54
3.8.5. Agita on rate	54
3.8.6. Time course	54
3.9 Enzyme assay	55
3.10. Bioreactor	55
3.11. Enzyme purification	
3.11.1. By using ammonium sulfate	
3.11.2. Effect of pH on enzyme precipitation by	56
ammonium sulfate	50
3.11.3. By organic solvents	57
3.11.4. By gel filtration	57
3.12. Determina on of soluble protein	
3.13. Determina on of pH values	62

3.14. Effect of pH on the rate of catalyzed reaction	62
3.14.1. Op mum pH	62
3.14.2. pH stability	63
3.15. Effect of substrate concentration	63
3.16. Substrate specificity	64
3.17. Glucose inhibi on	64
3.18. Effect of temperature	64
3.18.1. Op mum temperature	64
3.18.2. Thermal stability	65
3.19. Effect of metal ion and some substances on	65
cellobiase activity	65
3.20. Sta s cal analysis	66
4. Results	
4.1. Isola on and screening of xylanoly c strains and	60
the media used in isolation	69
4.2. Identification of the strain isolate and Phylogenetic	71
analysis	71
4.3. Comparing between physically treated and	
chemically treated raw materials on production of	74
xylanase enzyme	
4.4. Effect of corn cob concentrations on xylanase	
production	76

4.5. Effect of nutritional requirements		
4.5.1. Carbon sources		
4.5.1.1 Effect of chemical carbon sources	77	
4.5.1.2. Effect of raw materials as carbon sources	79	
4.5.2. Nitrogen sources	81	
4.5.2.1 Effect of chemical nitrogen sources	81	
4.5.2.2 Effect of raw materials as nitrogen sources	83	
4.5.2.3. Effect of corn steep liquor concentration	85	
4.5.3. Effect of culture medium components	86	
Part I: Shake flask fermentation	88	
4. I.6. Environmental condi ons	88	
4. I.6.1.Effect of inoculum size	88	
4. I.6.2. Effect of initial pH	89	
4. I. 6.3. Effect of aeration		
4. I. 6.4. Effect of incubation temperature		
4. I. 6.5. Effect of agitation rate	94	
4. I. 6.6. Effect of time course	95	
Part II: Bioreactor fermentation	96	
4.6. II.1. Incuba on period	96	
4.6. II.2. Effect of agitation rate	97	
4.6. II.3. Effect of aeration rate		
4.7. Purification studies	100	

4.7.1. Effect of ammonium sulfate concentration	100
4.7.2. Effect of pH	
4.7.3. Effect of organic solvents	103
4.7.4. Electrophoresis of the SDS-PAGE	105
4.8. Factors affecting purified enzyme reaction	
4.8.1. Op mum pH	106
4.8.2. pH stability	107
4.8.3. Effect of substrate specificity	109
4.8.4. Effect of substrate concentration	
4.8.5. Glucose inhibi on	113
4.9. Thermodynamic of enzyme catalyze reac on	114
4.9.1. Op mum temperature	
4.9.2. Thermal stability of xylanase produc on from A.	116
niger	110
4.10. Effect of metal ions	119
5. Discussion	
6- Summary	
7- References	159

List of Tables

	Title	Page
Table (1):	Selecting the most producible cellulolytic isolates on different media using shake flasks a batch culture technique.	70
Table (2):	Comparing between physically treated and chemically treated raw materials on production of xylanase activity from Aspergillus niger strain AUMC 14230.	75
Table (3):	Effect of corn cob concentrations on xylanase production by <i>Aspergillus niger</i> strain <i>AUMC 14230</i> .	76
Table (4):	Aspergillus niger strain AUMC 14230.	78
Table (5):	Aspergillus niger strain AUMC 14230.	80
Table (6):	Effect of different chemical Nitrogen sources on cellulolytic enzymes production by <i>Aspergillus niger</i> strain <i>AUMC 14230</i> .	82

vi

Effect of different raw materials as a nitrogen source on xylanase enzyme Table (7): 84 production by Aspergillus niger strain AUMC 14230. steep liquor (CSL) of Corn Effect xylanase concentrations on enzyme Table (8): 85 production by Aspergillus niger strain AUMC 14230. Effect of culture medium components on the biosynthesis of xylanase during the Table (9): 87 growth of Aspergillus niger strain AUMC 14230. Effect of inoculum size on biosynthesis of Table (10): enzymes by Aspergillus niger strain AUMC 88 14230. Effect of initial pH on xylanase enzyme production by Aspergillus niger strain Table (11): 90

AUMC 14230.

Effect of aeration on xylanase production

- Table (12):91by Aspergillus niger strain AUMC 14230.
- Table (13):Effect of incubation temperature on
xylanase production.93

vii

Table (14):Effect of agitation rate on xylanase
production.94

Time course of synthesis of xylanase from

- Table (15):Aspergillus nigerstrainAUMC1423095under optimum fermentation conditions.Production of xylanase enzyme during the
- Table (16):course of fermentation using bioreactor96as a batch culture technique.

Effect of agitation rate on xylanase

Table (17):enzyme production using bioreactor as a
batch culture technique.98

Effect of aeration rate on xylanase

Table (18):enzyme production using bioreactor as a99batch culture technique.

Effect of ammonium sulfate concentration

- Table (19):on xylanase enzyme precipitation from 101Aspergillus niger strain AUMC 14230.Effect of pH value on the precipitation of
- Table (20):A.niger by xylanase ammonium Sulfate102(0.8 satura on).
- Table (21):Effect of organic solvents on xylanase
precipitation from Aspergillus niger.104

Table (22):	Summary of partial purification of	105
	xylanase secreted by A.niger.	105
Table (23):	Effect of pH on the activity of xylanase	106
	from A.niger.	
Table (24):	Effect of pH stability during storage of	108
	xylanase from A.niger.	
T (05)	Substrate specificity of partial purified	110
Table (25):	extracellular xylanase from A.niger.	
Tabla (26).	Effect of substrate concentration on both	112
Table (26):	enzymes activity of A.niger.	
Tabla (27).	Effect of glucose concentration on xylanse	113
Table (27):	activity from A.niger.	
Table (20).	Effect of temperature on the activity of	115
Table (28):	xylanase from Aspergillus niger.	115
Table (29):	Thermal stability of partial purified	117
	xylanase from A. niger.	11/
Table (30):	Effect of metal ions and chemical reagents	110
	on xylanase activity from A.niger.	119

List of Figures

	Title	Page
	Selecting the most producible cellulolytic	
Figure (1):	isolates on different media using shake	71
	flasks a batch culture technique.	
Figure (2):	Sequencing results for (FAY3)	72
	Phylogenetic tree based on ITS	
Figure (3):	sequences of rDNA of Aspergillus niger	73
	(AUMC 14230).	
	Comparing between physically and	
Figure (4):	chemically treated raw materials on	75
rigui e (4).	production of xylanase activity from	13
	Aspergillus niger.	
Figure (F).	Effect of corn cob concentrations on	76
Figure (5):	xylanase production by Aspergillus niger.	76
	Production of xylanase using different	
Figure (6):	agriculture residues as carbon sources by	79
	Aspergillus niger.	
	Production of xylanase using different	
Figure (7):	agriculture residues as carbon sources by	80
	Aspergillus niger.	

Х

Figure (8):	Effect of different chemical Nitrogen sources on xylanase enzyme production by <i>Aspergillus niger</i> .	83
Figure (9):	Effect of different raw materials as a nitrogen source on xylanase enzyme production by <i>Aspergillus niger</i> .	84
Figure (10):	Effect of Corn steep liquor (CSL) concentrations on xylanase enzyme production by <i>Aspergillus niger</i> .	86
Figure (11):	Effect of inoculum size on biosynthesis of enzymes by <i>Aspergillus niger</i> .	89
Figure (12):	Effect of initial pH on xylanase enzyme production by <i>Aspergillus niger</i> .	90
Figure (13):	Effect of aeration on xylanase production by <i>Aspergillus niger</i> .	92
Figure (14):	Effect of incubation temperature on xylanase production.	93
Figure (15):	Effect of agitation rate on xylanase production.	94
Figure (16):	Time course of synthesis of xylanase from <i>Aspergillus niger</i> .	95

xi

Production of xylanase enzyme during

- Figure (17): the course of fermentation using 96 bioreactor as a batch culture technique. Effect of agitation rate on xylanase
- Figure (18):enzyme production using bioreactor as a98batch culture technique.

Effect of aeration rate on xylanase

Figure (19):enzyme production using bioreactor as a99batch culture technique.

Effect of pH value on the precipitation of

Figure (20): *A.niger* by xylanase ammonium Sulfate 103 (0.8 satura on).

GeneDireX BLUItra Prestained Protein 105

Figure (22):Effect of pH on the activity of partial
purified xylanase from A.niger107

 Figure (23):
 Effect of pH stability during storage of partial purified xylanase from A.niger.
 109

Figure (24):Substrate specificity of partial purified
extracellular xylanase from A.niger.111

Effect of substrate concentration on

- Figure (25): partial purified xylanase activity of 112 A.niger.
- Figure (26):Effect of glucose concentration on partial
purified xylanse activity from A.niger.114Effect of temperature on the activity of
- Figure (27): partial purified xylanase from *Aspergillus* 115 *niger.*
- Figure (28):Thermal stability of partial purified
xylanase from A. niger.118