

Al-Azhar University (Girls Branch) Faculty of Science Chemistry department

Chemistry of Nickel in Some Egyptian Soils

A thesis Presented by

Huda Ezzat Hamed Abd El-Rahman

Submitted for the Degree of Doctor of Philosophy of Science (Ph.D.) in Chemistry (Physical Chemistry)

A thesis submitted to Chemistry Department Faculty of Science Al-Azhar University (Girls Branch)

Under Supervision of

Prof .Dr. Nagwa A. Badway

Professor of Physical Chemistry, Faculty of Science Al-Azhar University (Girls Branch)

Prof .Dr. Amina A. Hamada

Professor of Physical Chemistry, Faculty of Science Al-Azhar University (Girls Branch)

Prof. Dr. Samir A. El-Gendi

Professor of Soil Chemistry, Soil Water and Environment Research Institute

CONTENTS

LIST OF ABBREVIATIONS	i
LIST OF TABLES	iv
LIST OF FIGURES	vi
ABSTRACT	viii
AIM OF THE WORK	xi
I. INTRODUCTION	1
II. LITERATURE REVIEW	6
II.1.General Properties of Nickel	6
II.2. Nickel content in Soils	7
II.2.1. Natural occurrence of Ni	7
II.2.2. Total Soil Nickel (Ni throughout the world)	8
II.3. Sources Of Nickel Contamination in Soils	10
II.3.1. Commercial Fertilizers and agrochemicals	10
II.3.2. Organic Manures and Biosolids	13
II.3.2.1. Heavy metals content in sewage sludge	14
II.3.2.2. Heavy metals content in sludge amending soils	16
II.3.3. Wastewater	18
II.3.4.Metal Mining and Milling Processes and Industrial	22
Wastes	
II.3.5. Air-Borne Sources	25
II.4. Influences of heavy metals accumulation on soil	29
properties	
II.4.1. calcium carbonate content	30
II.4.2. Organic matter	30
II.4.3 Soil reaction	31
II.4.4. Electrical conductivity (EC)	32
II.4.5. Bulk Density	33
II.4.6. Hydraulic conductivity	34
II.4.7. Moisture retention	35
II.4.8. macronutrients availability (N, P, and K)	36
II.5. Geochemical of Nickel in Soils	38
II.5.1. Fractionate of Ni in sludge and sludged soils	40
II.5.2. Fractionate of Ni in soils and sediments	42
II.5.3. Fractionate of Ni in industrial contaminated soils	49

List of Cont	ents
II.6. Mobility of Heavy Metals in soils	51
II.6.1. factors controlling the mobility of heavy metal in soil	52
II.6.2. Mobility factor	59
II.7. Free ion activity and Mineral- Solid Phases of Ni in	63
soils	
II.7.1. Solid Phase Formation	70
II.8. Heavy metal remediation	72
II.9. Ecological risks assessment of Heavy Metals	76
III. MATERIALS AND EXPERIMENTAL	81
TECHNIQUES	
III.1. Materials	81
III.1.1. Site description	81
III.1.2. Sampling	82
III.1.2.1. water sampling	82
III.1.2.2. Soil Sampling	82
III.2. Techniques	83
III.2.1. water analysis	83
III.2.2. Soil Analysis	84
III.2.2.1. Soil physical analysis	84
III.2.2.2. Soil chemical analysis	85
III.2.2.3. Total heavy metal content	87
III.2.3. Sequential Ni fractionation	88
III.2.4. Remediation Technique	89
III.2.5. Determining active Ni concentration	90
III.2.5.1. Constructing stability diagrams	93
III.2.6. Ecological risk assessments	94
IV. RESULTS AND DISCUSSION	99
IV.1. Sewage effluent water	99
IV.1.1. Water Salinity and related parameters	99
IV.1.2. Water acidity and alkalinity	100
IV.1.3. Macronutrient Concentrations	102
IV.1.4. Heavy metals in Sewage water effluent and Nile	102
water	
IV.2. Effect of Long-term Sewage Irrigation on Soil Physico-	105
chemical Properties	
IV.2.1. Texture Characteristics	105

List of Conte	
IV.2.2. CaCO ₃ content of Soils	108
IV.2.3. Organic Matter Content (OM)	108
IV.2.4. Soil pH	109
IV.2.5. Soil Salinity and sodicity	111
IV.2.6. Exchangeable sodium percentage (ESP)	112
IV.2.7. Bulk Density	113
IV.2.8. Total soil Porosity	114
IV.2.9. Hydraulic conductivity	114
IV.2.10. Soil Moisture characteristic Curve (Available	115
Water)	
IV.2.11. Soil Macronutrient concentrations in the tested	119
soils	
IV.2.12. Heavy Metals in the tested Soils	123
IV.2.12.1. Total Content (HM)	123
IV.2.12.2. DTPA- heavy metals in the tested soils	126
IV.2.12.3.Zn-Equivalent calculation (soil quality criterion	129
index)	
IV.3. Nickel mobility and its remediation technique	132
IV.3.1. Mobility of Ni in the tested soil	132
IV.3.2. Fractionation of Ni in the tested soil	136
IV.3.3. Mobility Factor (MF)	149
IV.3.4. Influence of remediation techniques on Ni fraction	152
IV.4. Nickel Activity	158
IV.4.1. Measurement of Ni activities in the tested soils	158
IV.4.2. Predicted solid-phases which controlling the	167
solubility of Ni in the soils	
IV.4.3. Ecological Assessment of Ni pollution in the	170
studied soils	
SUMMARY AND CONCLUSIONS	180
REFERENCES	191
ARABIC SUMMARY	1

LIST OF TABLES

Table		Page
Table [1]	Equilibrium constants (K°) of the some Ni minerals used in constructing the Ni-solubility.	94
Table [2]	Classes of Igeo, CF, Ei, and RAC.	98
Table [3]	General properties and heavy metal content of sewage effluent water and Nile water.	101
Table [4]	Some of the characteristics of the investigated soil samples.	107
Table [5]	The hydro-physical properties of the investigated soil profiles.	118
Table [6]	Some of chemical analysis of the investigated soil samples.	122
Table [7]	Total contents of some heavy metals in the investigated soil samples.	125
Table [8]	Some of available heavy metals for the investigated soil samples.	128
Table [9]	The availability index of the tested heavy metals and Zn- Equivalent of the investigated soil samples.	131

Table [10]	Ni association percent with the different chemical fractions as a percentage of their sum for tested soil profiles.	139
Table [11]	Ni association percent with different chemical fractions as a percentage of their sums after remediation.	154
Table [12]	Measured pH, equilibrium Ni mole fractions (MF) and pNi ²⁺ activities in the tested soil samples.	164
Table [13]	Risk assessment code, contamination factor, Geoaccumulation Index, and Single pollution index for uncontaminated, contaminated and remediated soils.	171

LIST OF FIGURES

Figure		Page
Fig.1	Effect of different period of sewage water	
	irrigation on pH of successive soil depths.	111
Fig.2	Effect of different period of sewage water	
	irrigation on ESP of successive soil depths.	113
Fig.3	Diagrammatic representation of the water retention	
	curve of WWS-0yrs soil	116
Fig.4	Diagrammatic representation of the water retention	
	curve for WWS-50yrs soils.	117
Fig.5	Diagrammatic representation of the water retention	
	curve for WWS-100yrs soils.	117
Fig.6	Distribution of the total Ni content with depth as	
	percentage of surface layer content for tested soil	
	profiles.	132
Fig.7	Distribution of the Ni associated with various	
	chemical fractions as a percentage of surface layer	
	content with different soil depth for WWS-0yrs	
	soil.	140
Fig.8	Distribution of the Ni associated with various	
	chemical fractions as a percentage of surface layer	
	content with different soil depth for WWS-50yrs	
	soil.	142
Fig.9	Distribution of the Ni associated with various	
	chemical fractions as a percentage of surface layer	
	content with different soil depth for WWS-100yrs	
	soil.	143
Fig.10	The mean values of various Ni fractions of tested	
	soil profiles.	145

List of Figures

Fig.11	Mobility factors of the studied soil.	151
Fig.12	Ni association percent of different chemical	
	fractions for soil amended with Activated charcoal	
	(different concentration).	155
Fig.13	Ni association percent of different chemical	
	fractions for soil amended with Diammonium	
	phosphate (different concentration).	155
Fig.14	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with unpolluted soil	160
Fig.15	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with polluted soil	160
Fig.16	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with 1% charcoal amended soil.	161
Fig.17	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with 2% charcoal amended soil.	161
Fig.18	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with 3% charcoal amended soil.	162
Fig.19	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with 1% DAP amended soil.	162
Fig.20	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with 2% DAP amended soil.	163
Fig.21	Changes in NiL/(NiL+PbL) mole fractions after	
	reacting solutions with 3% DAP amended soil.	163
Fig.22	Measured Ni^{2+} activities in the studied soils	
	compared with those maintained by possible Ni-	
	solid phase compounds in soils.	168

ABSTRACT

Due to the paucity of water resources in Egypt, many farmers are compelled to use low quality water in irrigation. So that the present study aims to investigate the Ni chemistry in soil continuously irrigated with sewage effluent water for long period.

Results of sewage effluent water revealed that water acidity (pH), salinity (EC), and concentration of (NH₄, Fe, Zn, and Cu) were within the permissible maximum limits cited by FAO (1976). Meanwhile; NO₃, Mn, and Ni concentrations were above PML. On the other hand in Nile water all the previous parameters were below PMLs.

The continual use of sewage water in irrigation improves soil nutrients status, but at the same time increases the possibility of nitrate as well as heavy metals contamination. Also, the physicochemical parameters of the waters were still appropriate for soil irrigation. The calculated SAR value was classified as slightly to moderate hazard however and it was still lower than the permissible maximum limit (PML). Meanwhile; NO₃, Mn, and Ni concentrations were above the PML.

Prolonged use of sewage water irrigation over 100-yerars led to detectable increases in all the tested soil parameters, except for $CaCO_3$ content. The soil was uncontaminated with Fe, contaminated with Cu, Mn, and Zn, and polluted with Ni. The values of Zn equivalent in sewage effluent irrigated soils were above the critical level.

In the sewaged soils the maximum concentration of Ni was in the surface and to some extent in subsurface, and then it decreased irregularly with depth. The total percentage recoveries of Ni proved that the used procedure to fractionate Ni to its several pools is reliable and satisfactory. With increasing period of sewage effluent application the percentage of residual Ni fractions decreased and transformed to the other fractions, corollary to that possessing more threats to the environment. With the continued use of sewage effluent water Ni has high potentials to be mobile and consequently posing environmental hazards.

Amending Ni-contaminated soil either by activated charcoal (AC) or diammonium phosphate (DAP) led to increase of residual Ni on the expense of the other Ni fractions. Diammonium phosphate material was more effective than activated charcoal materials in immobilizing Ni in contaminated soil.

The continual uses of sewage effluent water in irrigation increased Ni^{2+} activity by 6.73 folds than that in unpolluted soil sample. After remediation The DAP material was more effective in decreasing Ni^{2+} activities than that of charcoal material.

The constructed stability Ni diagram indicated that the Ni solubility in sewage effluent–contaminated soil is controlled by $Ni_3(PO_4)_2$ mineral in equilibrium with Ca. phosphate (log CO₂=-2.52 atm.), while in uncontaminated soil, NiFe₂O₄ mineral in equilibrium with Fe(OH)₃ amorphous was likely governed Ni solubility.

Among the tested ecological assessment indices, Risk assessment code index (RAC) which based on soil fractionation studies provide useful information for assessing metal bioavailability or toxicity. RAC could be able to differentiate between degree of soil heavy metal contamination (uncontaminated, contaminated, and remediated soil).

ix

Keywords: - sewage effluent, soil properties, Nickel chemistry, soil contamination, soil remediation, Ni activity, ecological risk, fractionation.