

Cairo University Faculty of Veterinary Medicine Department of Parasitology

Advanced Studies on Tick Borne Blood Parasites Among Pets (Dogs)

A thesis Presented by

Asmaa Abdelwadod Mohamed Hegab

B.V.Sc. Benha University (2004) M.V.Sc. Cairo University (2017) For Ph.D. degree (Parasitology)

Under Supervision of

Dr. Magdy Mostafa Fahmy

Professor of Parasitology Faculty of Veterinary Medicine Cairo University

Dr. Mai Abuowarda Mohammed

Assistant Professor of Parasitology Faculty of Veterinary Medicine Cairo University

Dr. Hussein Mohamed Omar Professor of Parasitology

Faculty of Veterinary Medicine Cairo University

Dr. Souzan Girgis Ghattas Chief Researcher Department of Parasitology Animal Health Research Institute

Cairo University

Faculty of Veterinary Medicine Department of Parasitology

Name: Asmaa Abdelwadod Mohamed Hegab. Nationality: Egyptian. Date and place of birth: 16-10-1982 (Kaliobia Governorate). Scientific Degree: Ph.D. in Veterinary Medical Sciences. Spatiality: Parasitology. Title of thesis: Advanced studies on tick borne blood parasites among pets (dogs). Supervisors: Dr. Magdy Mostafa Fahmy Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University Dr. Hussein Mohamed Omar Professor of Parasitology, Faculty of Veterinary Medicine, Cairo University Dr. Mai Abuowarda Mohammed Assistant Professor in Parasitology Department, Faculty of Veterinary Medicine, Cairo University Dr. Souzan Girges Gattas Chief Researcher, Parasitology Department, Animal Health Research Institute, Agricultural **Research Cente**

Abstract

The present study screened house hold and kenneled dogs with its attached ticks for tick-borne pathogens (TBPs) by traditional and molecular techniques. Blood samples were collected from 208 dogs from sexes, different ages and breeds in Cairo and Giza governorates during period between March 2018 to February 2019. Additionally, 1386 ticks were collected from 144 infested dogs then, divided to 546 ticks were dissected for preparation of hemolymph, mid gut and salivary gland smears, 120 female ticks were kept in lab till egg laying for preparation of 360 egg smears and 720 engorged ticks were used for preparation of 144 tick pools for PCR. Results showed that, all ticks collected in the present study were identified as Rhipicephalus sanguineus. TBPs were detected microscopically in 35.58% (74/208) of examined blood samples including, *Theileria equi* in 25/208 (12.02%) dogs followed by *Anaplasma* and *Ehrlichia* in 23/208 (11.1%) finally, *Babesia canis* in 17/208 (8.2%). While Hepatozoon canis was not detected microscopically in blood smears. Co-infections were observed in 9/208 (4.33%). The total prevalence rates of infection with TBPs in ticks were 44.69%, 68.50% and 15.75% in hemolymph, mid gut and salivary gland respectively. Significant difference in total TBPs rate of infection between different seasons and age groups with P value < 0.05. While breed and sex have no significant effect on rate of infection. Ultrastructure of different TBPs stages were described in details within mid gut and salivary gland of R. sanguineus by TEM as, the early oocyst and sporocysts of *H. canis*, *A. phagocytophilum* colony, penetrating kinetes and sporozoites (Infective stages) of *Theileria equi* and *Babesia canis*. PCR amplified a monomorphic DNA fragment of 560 bp size in case of Babesia and Theileria spp, 670 bp in case of H. canis and 450 bp in case of Anaplasma and Ehrlichia spp. Overall molecular prevalence rate of TBPs was 51.61% and 36.8% of examined dog's blood and ticks. Theileria spp. recorded the highest prevalence rate in (25.81% and 10.42%) dogs followed by, *Anaplasma* and *Ehrlichia* in (19.35% and 20.83%), then *Babesia canis* in (6.45% and 5.55%). While, *H. canis* recorded the lowest prevalence rate (0% and 2.8%) in examined blood and Tick respectively. Sequence analysis identified seven different species of TBPs, namely Theileria equi, B. canis vogeli, H. canis, E. canis, A. phagocytophilum, A. marginale and A. Platys. The identified TBPs were accessed on the GenBank under accession number: MT533853, MT533854, MT533857, MW237710, MW237711 and MT533884 for Theileria equi isolates, MW432533 for B. canis, MZ203845 for H. canis. While, Anaplasmataceae family accession numbers were MZ068099 and MZ203829 for A. platys and A. phagocytophilium respectively, MZ203830, MZ203832, MZ203831 and MZ203834 for A. marginale. MZ191504, MZ191505 and MW433608 for E. canis from dog's blood and ticks (R. sanguineus).

Keywords: Anaplasma, Babesia, Hepatozoon, PCR, Rhipicephalus sanguineus, Theileria, TEM, TBPs.

Table of Contents

Chapter	apter Title	
1.	Introduction	1
2.	Review of literature	4
	2.1. Identification of ticks collected from dogs	4
	2.2. Prevalence of tick-borne pathogens in dogs	7
	2.3. Prevalence of tick-borne pathogens in <i>R. sanguineus</i>	13
	2.4. Risk factors associated with Tick-borne pathogens in dogs	15
	2.5. Light microscopic examination of TBPs in dog's blood and ticks	20
	2.6.Transmission electron microscope examination (TEM) of TBPs in ticks	27
	2.7. Polymerase chain reaction (PCR) and DNA sequencing	34
3.	Published paper	40
4.	Submitted papers	48
	4.1. First submitted paper	48
	4.2. Second submitted paper	83
5.	Discussion	130
6.	Conclusions and Recommendations	143
7.	Summary	145
8.	References	148
9.	Appendix	170
10	Arabic summary	١

List of Tables

NO.	Title	Page
Chapter (3). Published paper		
	Incidence rates of infection with tick-borne blood	
Table (1)	parasites in smears prepared from Brown dog	
	ticks.	43
<u>Chapter (4</u>	<u>). Submitted papers</u>	
<u>4.1. First su</u>	bmitted paper	
Table (1)	Prevalence of Theileria spp. in blood and ticks	
	collected from dogs using different techniques.	74
	Prevalence of <i>Theileria</i> spp. infection among	
Table (2)	household and sheltered dogs (based on blood	74
	smears).	/4
	The identity percentage of <i>I. equi</i> sequences	
	from dog blood and R. sanguineus delected in the	
Table (3)	MT533857 MW237710 MT533884 and	
	MW237711) in T equi strains retrieved from	
	animals and ticks	75-76
4.2. Second submitted paper		
Table (1)	Primers sequences used in the current study	113
Table (2)	Thermal profile used in PCR procedures	113
1 4010 (2)	Prevalence of Tick-borne pathogens infection	115
	related to some risk factors (season, age, sex and	
Table (3)	breed) by microscopic examination of blood	
	smears.	114
	Prevalence of tick -borne pathogens infection in	
Table (4)	dog's blood and associated ticks by traditional	
	and molecular techniques.	115
	The identity percentage of Babesia canis vogeli	
Table (5)	sequences from dog blood detected in the current	
Table (3)	study (MW432533) in relation to Babesia canis	
	vogeli strains retrieved from animals and vector	115

List of Tables (continued).

NO.	Title	Page
Table (6)	The identity percentage of <i>Hepatozoon canis</i> sequences from <i>R. sanguineus</i> collected from dogs detected in the current study (MZ203845.1) concerning <i>Hepatozoon canis</i> strains retrieved from animals and ticks.	116
Table (7)	The identity percentage of <i>Anaplasma platys, A. phagocytophilum,</i> and <i>A. marginale</i> sequences from dog blood and <i>R. sanguineus</i> detected in the current study (MZ068099, MZ203829, MZ203831, MZ203834, MZ203832, and MZ203830) in <i>Anaplasma</i> species retrieved from animals and ticks.	117-118
Table (8)	The identity percentage of E. canis sequencesfrom dog blood and R. sanguineus detected in thecurrent study (MW433608, MZ191505, andMZ191504) in E. canis retrieved from animalsand ticks.	
<u>Chapter (9). Appendix</u>		
Table (1)	The current isolates Accession numbers deposited on the GenBank	174

List of Figures

NO.	Title	Page
Chapter (3)	. Published paper	
Figure (1)	Infection rates of tick borne protozoan parasites in smears	
	prepared from <i>R. sanguineus</i> .	38
Figure (2)	An adult of male and female <i>R. sanguineus</i> showed (A)	
	Male dorsal view, (B) Male ventral view, (C) Female	
	dorsal view, (D) Female ventral view, (E) Male spiracular	
	plate, (F) Female spiracular plate, (G) Ventral view of	
	mouth part and basis capituli and (H) Scutum posterior	
	margin in female (X 20). (P: palps, HY: hypostome. Mp :	
	mouth part, BC :basis capituli, E: eye, F: festoons, CA:	
	caudal appendage, GO: genital opening, AO: anal	
	opening, AP: adanal plate, AC: accesoryadanal plate SC:	20
F :	Scutum, E: Eye).	39
Figure (3)	dogs	20
Figure (4)	Giamsa stained gut smears of <i>P</i> sanguingus showed	- 39
rigure (4)	developmental stages of H can (Λ) : Earnale	
	macrogamete before fertilization (B): zvgote (early	
	occyst) (C): young occyst with irregular cytoplasm in	
	early sporogony (D): mature occyst filled with ripe	
	sporocysts (X1000)	39
Figure (5)	Developmental stage of <i>Bahesia canis</i> in Giemsa stained	
i igui e (c)	smears from gut salivary gland and egg of <i>R</i> . sanguineus	
	(A and B): zvgote in gut. (C): gut smear showing	
	developing kinete inside zygote. (D): salivary gland	
	smears showing binary fission of sporont to form	
	sporozoites, (E and F): Babesia stages in egg smears (X	
	1000).	39
Figure (6)	Developmental stage of Theileria spp. in Giemsa stained	
	smears from gut, hemolymph and salivary gland of R .	
	sanguineus. A: macro gamete. (B): early zygote with	
	chromatin material at the margins of the cell. (C): older	
	zygote with distinct peripheral nucleus (D): developing	
	kinete in zygote (E): club shaped mature kinete with	
	dense polar cap in hemolymph smears. (F) multiple	
	tission of sporont to form sporozoites in salivary gland	20
	smears (X 1000).	- 39

NO.	Title	Page
Figure (7)	Toludine blue stained semi thin section through salivary gland and midgut of <i>R. sanguineus</i> showing (A and B): Some salivary acini filled with <i>Babesia</i> sporozoites, (C): <i>A. phagocytophilum</i> colony in midgut section, (D): Early oocyst of <i>H. canis</i> in midgut sections. (I: acini type I, II: acini type II, III: acini type III, L: acinus lumen, dt: duct, SG: salivary granules, Sp: spront(A at X 400 and B, C, D at X 1000).	39
Figure (8)	Electron photograph of ultrathin cross sections through gut of <i>R. sanguineus</i> showing (A): <i>H.canis</i> early oocyst has few rhopteris (R) and micronemes (MN), (B):young oocyst of <i>H. canis</i> has many amylopectin granules (AG), electron-dense bodies, and folded wall, (C): young sporocyst filled with crystalloid granular bodies (CG) and lipid vacuoles (LV), (D): older Sporocysts with multiple divided nuclei (N), and exhausted lipid vacuoles (EL), (E): <i>A. phagocytophilum colonies</i> in double membrane bounded vacuole (DW) and contained electron- dense granules (D), (F): ruptured vacuole and dense form of <i>A. phagocytophilum</i> are free in cytoplasm of	
Figure (9)	Infected cells. Electron photographs of ultrathin cross sections through salivary gland of <i>R. sanguinus</i> showing (A): penetrating kinete(K), (B): dividing stages(DS), (C): higher magnification of dividing stages begins to be almost pyriform in shape with cytoplasm filled with ribosomes, (D): sporozoites longitudinal section, (E): cross section through apical part of sporozoite. ((N) nucleus, (Nu) nucleolus, (P) pellicle, (BM) basal membrane of host cell, (DW) double- membraned structures, (V) vacuoles, (RI) ribosomes, (PC) pale cytoplasm, (R) rhoptries, (MN) micronemes, (MP) micropores, (PP) posterior polar ring, (GO) golgi apparatus and (HM) mitochondria of host cell).	40

NO.	Title	Page
Chapter (4)	. 4.1. first submitted paper	
Figure (1)	Male and female R. sanguineus. (A) Male dorsal	
	view, (B) male ventral view, (C) female dorsal view,	
	(D) female ventral view, (E) male spiracular plate, (F)	
	six-legged larva (A, B, C, and D: 20×; F, 200×. (Mp :	
	Mouth part: BC Basis capituli, E: eye, F: festoons,	
	GO: genital opening, AO: anal opening, AP: adanal	
	plate, CA: caudal appendage, C: Coxa.	73
Figure (2)	Sites and signs on dogs: (A and B) predilection sites	
	of ticks. (C, D) Signs of <i>Theileria equi</i> infection in	
	dogs. (C): Pale mucosal membrane. (D): Corneal	72
	opacity.	/3
Figure (3)	Giemsa-stained thin blood and buffy coat smears from	
	dogs showing <i>Thelleria</i> spp. (A and B) Erythrocytic	
	F and E) Schigant in Irrenhaarta (D) Microschigant	
	E, and F) Schizont in lymphocyte. (D) Microschizont. (E) Macroschizont (E) Theileria schizont in buff	
	(E) Macroschizont. (F) Thenerta schizont in burry	74
Figure (4)	Coat sinears (1000×).	/4
rigure (4)	Midgut smears showing <i>Theilaria</i> zygotes and a	
	developing kinetes inside zygotes (C and D) Salivary	
	gland smears showing sporonts before and during	
	multiple fission (F F and G) Hemolymph smears	
	showing sporokinetes (E) rod-shaped multinucleated	
	vermicule (F) And round and amoeboid stages of	
	Theileria (G) 1000×)	74
Figure (5)	Toluidine-blue-stained semi-thin section through the	, .
g (-)	midgut and salivary gland of R. sanguineus showing	
	(A and B) a <i>Theileria</i> spp. zygote within	
	parasitophorous vacuoles in midgut tissue; (C)	
	rounded penetrating ookinetes inside salivary gland	
	tissue; (D) sporoblast of Theileria spp. filled with	
	salivary acini. PK: penetrating ookinete, SG:	
	secretory granules, HN: host cell nucleus) (1000×).	75

NO.	Title	Page
Figure (6)	Electron micrographs of ultra-thin cross sections	
	through the gut and salivary gland of R .	
	sanguineus showing Theileria spp. (A) Zygote	
	and (B) the apical part of sporozoites. (N)	
	nucleus, (R) rhoptries, (MN) micronemes, (GC)	
	granular cytoplasm, (PV) parasitophorous	
	vacuole, (DM) double membrane, (GA) Golgi	
	apparatus, (ER) endoplasmic reticulum, and	75
Eigung (7)	(HM) nost-cell milochondria).	/5
Figure (7)	Phylogenetic relationships based on ssu-fKNA acquired to T acquired to T	
	Equation For the trees were constructed and analyzed	
	using a neighbor-joining method Similarity	
	(nercent identity) and genetic divergence of the	
	ssu-rRNA sequences of the current strains of T .	
	<i>equi</i> from dogs and <i>R. sanguineus</i> ticks in Egypt	
	were compared with each other.	76
Figure (8)	Similarity (percent identity) of ssu-rRNA	
	sequences of T. equi obtained from dogs and	
	Rhipicephalus sanguineus ticks in Egypt.	77
Figure (9)	Phylogenetic relationships based on the small	
	subunit ribosomal RNA (ssu-rRNA) sequences of	
	T. equi. The trees were constructed and analyzed	-
	using a neighbor-joining method	78
Chaptor (1)	2 Second submitted namer	
Figure (1)	Male and female R sanguingus showed (A) Male	
i igui e (i)	dorsal view. (B) Male ventral view. (C) Female	
	dorsal view, (D) Female ventral view (bare=200	
	μm).	115
Figure (2)	Giemsa-stained dog blood smears showing, (A	
	and B) B. canis, (C) Anaplasma platys inclusion	
	inside thrombocytes, (D) Anaplasma inclusion	
	inside RBCs. (E) A. phagocytophilum merulae	
	inside neutrophil, (F) E. canis merulae inside	
	monocyte (X1000 bare= 5μ m).	115

NO.	Title	Page
Figure (3)	Giemsa stained hemolymph smears of R. sanguineus	
	showed (A): Spherical and amoeboid form of Babesia	
	canis. (B): Mature club shaped vermicules of B. canis.	
	(C): Hepatozoon canis mature oocysts. (D): Non	
	infected plasmatocyte cell. (E): plasmatocyte cell after	
	phagocytosis of Anaplasma spp. (F): plasmatocyte	
	eliminate <i>Anaplasma</i> spp by nodulation (X 1000, bare=	
	5 μm).	116
Figure (4)	Signs of TBPs infection in dogs (A): jaundice in sclera	
	of eye (B): icteric mucosal membrane.	116
Figure (5)	Phylogenetic relationships based on small subunit	
	ribosomal RNA (ssu-rRNA) sequences of Babesia	
	canis vogeli. The tree was constructed and analyzed	115
	using a neighbor-joining method.	117
Figure (6)	Similarity (percent identity) and genetic divergence of	
	small subunite ribosomal RNA (ssu-rRNA) sequences	
	of Babesia can's vogeli isolated from Blood of dogs	
	in Egypt (representing number, 1) compared with the	110
	most similar reference sequences (GenBank).	118
Figure (7)	Phylogenetic relationships based on 18S ribosomal	
	RNA (18S-rRNA) sequences of Hepatozoon canis. The	
	tree was constructed and analyzed using a neighbor-	110
F (0)		119
Figure (8)	Similarity (percent identity) and genetic divergence of 1.95 minoremeter DNA (195 mDNA) accuracy of	
	185 fibosomal RINA (185-fRINA) sequences of	
	Repatozoon can's isolated from dogs in Egypt	
	(representing number 1) compared with the most	
	similar reference sequences (GenBank)	110
Figure (0)	Phylogenetic relationships based on 16S ribosomal	117
1 igure (9)	r_{1} relationships based on 105 HOOSOIIIan RNA (16S ₋ rRNA) sequences of Anaplasmataceae	
	The trees were constructed and analyzed using a	
	neighbor-ioining method	120
	norghoor-johning method.	120

NO.	Title	Page	
Figure (10)	Similarity (percent identity) and genetic divergence of		
	16S ribosomal RNA (16S- rRNA) sequences of A.		
	platys, A. phagocytophilum and A. marginale isolated		
	from dogs and <i>Rhipicephalus sanguineus</i> ticks in		
	Egypt (representing number, 1-4, 14, 25) compared		
	with the most similar reference sequences (GenBank).		
	The 165 fRINA of A. marginale sequenced in this		
	study is marked with oval shape and represented as		
	triangular shape and represented as number 14 and 4		
	<i>platys</i> is marked with square shape and represented as		
	number 25.	121	
Figure (11)	Phylogenetic relationships based on 16S ribosomal		
0 ()	RNA (16S- rRNA) sequences of Ehrlichia canis. The		
	trees were constructed and analyzed using a neighbor-		
	joining method	122	
Figure (12)	Similarity (percent identity) and genetic divergence of		
	16S ribosomal RNA (16S rRNA) sequences of		
	Ehrlichia canis isolated from dogs and Rhipicephalus		
	sanguineus ticks in Egypt (representing number, 1, 9,		
	15) compared with the most similar reference		
	sequences (Genbank). The TOS IKNA of Enrichia		
	represented as numbers 1 9 15	123	
		125	
Chapter (9). A	Chapter (9). Appendix		
	Developmental stages of <i>B. canis</i> in dog's blood and		
	attached ticks smears. (A): pear-shaped merozoits in		
Figure (1)	RBCs, (B): Clup-shaped vermicules in hemolymph		
3 ()	smears, (C): Zygote in midgut smears and (D):		
	sporont during binary fission in salivary gland of tiols (V1000)	162	
		102	

NO.	Title	Page
Figure (2)	Developmental stages of Theileria spp. in dog's blood	
	and attached ticks smears. (A): ring-shape merozoits in	
	RBCs, (B): micro schizonts in lymphocyte, (C): Zygote	
	in midgut smears, (D): developing kinite inside the	
	zygote in midgut smears, (E): Clup-shaped ookinite in	
	hemolymph smears and (E): Sporont during multiple	
	fission in salivary gland of ticks (X1000).	163
Figure (3)	Developmental stages of Anaplasma spp. in dog's	
	blood and attached ticks smears. (A): dark basophilic	
	inclusions in RBCs, (B): A. phagocytophilum merulae	
	in neutrophil, (C): A. platys inclusions inside blood	
	platelets, (D, E and F) hemolymph smears (D): Non	
	infected plasmatocyte cell. (E): plasmatocyte cell after	
	phagocytosis of Anaplasma spp. (F): plasmatocyte	
	eliminate Anaplasma spp by nodulation (X 1000).	163
Figure (4)	(A, B and C): Developmental stages of H. canis in	
	midgut, and hemolymph smears prepared from tick's	
	smears. (A): H. canis macrogametes, (B): H. canis	
	zygote merulae in neutrophil, (C): H. canis mature	
	oocyst, (D): Ehrlichia canis morulae inside monocyte	
	in blood of dogs (X 1000).	164
Figure (5)	Agarose gel electrophoresis of amplified products	
	obtained from Theileria spp. M, DNA size marker is	
	indicated on the left; lane P is the positive control, lane	
	N is the negative control, and lanes 1–4 are <i>Theileria</i>	
	equineus-positive samples at 560 bp.	164
Figure (6)	Agarose-gel electrophoresis of amplified products	
	obtained from (A): Babesia canis. M, 100 bp DNA	
	ladder is indicated at left; lane P indicated control	
	positive, lane N indicated control negative, lane 1- 6	
	indicated positive samples at 560 bp. (B): Anaplasma	
	and Ehrlichia spp. M, 100 bp DNA size marker is	
	indicated at left; lane1 indicated control negative, lane	
	2, 3, 5 and 6 positive samples at 450 bp lane 4 and 7	
	negative samples. (C): Hepatozoon canis M, 100 bp	
	DNA ladder is indicated at left; lane 1 indicated control	1.6-
	negative, lane 2,3 indicated positive samples at 670 bp.	165

List of Abbreviations

Abbreviations	Description
ME	Microscopic Examination
PCR	Polymerase Chain Reaction
TBPs	Tick-Borne Pathogens
TBDs	Tick-Borne Diseases
EDTA	Ethylene Diamine Tetra Acetic Acid
РН	Degree of acidity and alkalinity
TBE buffer	Tris borate ethylene diamine tetra acetic acid buffer
μl	Micro liter
%	Percent
DNA	Deoxy Ribo Nuclic Acid
RPM	Revelution Per Minute
μm	Micrometer
χ^2	Pearson chi-square
TEM	Transmission Electron Microscope
bp	Base Pair
ELISA	Enzyme Linked Immune Sorbent Assay
IFAT	Indirect Flourcent Antibody Tichnique
16S-rRNA	16 Small Ribosomal Ribo Nuclic Acid
ssu-rRNA	Small SubUnite Ribosomal Ribo Nuclic Acid
18S-rRNA	18Small Ribosomal Ribo Nuclic Acid