PERFORMANCE AND IMPROVEMENT OF YIELD AND BULB QUALITY OF SOME ONION GENOTYPES

By

HAMED HASSAN BARAKAT

B.Sc. Agric. Sci. (Plant Production), Fac. Agric., Cairo Univ., 2012

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Vegetable Crops)

Department of Vegetable Crops Faculty of Agriculture Cairo University EGYPT

2021

Format Reviewer

Vice Dean of Graduate Studies

Name of Candidate: Hamed Hassan BarakatDegree: M.Sc.Title of Thesis: Performance and Improvement of Yield and Bulb Quality
of some Onion GenotypesBulb QualitySupervisors: Dr. Ahmed Abdel-Moneim Hassan
Dr. Khaled El-Sayed Ali Abdel-Ati
Dr. AbdEl-Megiud Mabrouk AbdEl-Megiud Abo-DahabDepartment: Vegetable CropsDepartment: Vegetable CropsDate: 2/9/2021

ABSTRACT

This study was conducted during 2015 to 2017 at El-Giza Research Station, Field Crops Research Institute, Agriculture Research Center, Ministry of Agriculture, Egypt. Fifteen onion genotypes were evaluated in two field experiments conducted with all recommended cultural practices and insectsides. In the first experiment, protective and systemic recommended fungicides against downy mildew were used, while the second was conducted without spraying fungicides against downy mildew. Randomized complete block design with three replicates was used in both experiments. Studied characters were disease severity (DS%) for downy mildew, total yield (TY), marketable yield (MY), average bulb weight (ABW), number of complete rings (NCR), number of growing centers (NGC), total soluble solids (TSS%) and bulb dry matter percentage (BDM%). Genotypes Yellow Creole, Ori Yellow, Composite 16 Large Oblong, Giza Red and Giza 6 Mohassan recorded low DS% under both control and no control of downy mildew which reflect their adaptability and stability performance under different environments. Under both control and no control of downy mildew, superior genotype were Giza White, Composite 16 White, Composite 9 Globe, Giza Red and Giza 6 Mohassan in TY; Giza 6 Mohassan and Ori Yellow in MY; and Ori Yellow, Giza 6 Mohassan, Composite 16 Large Oblong and Yellow Creole in ABW. Genotypes Beth Alpha, Texas Early Yellow Grano, Yellow Creole and Composite 9 Globe were higher in NCR and exhibited the lowest NGC per bulb under control and no control conditions of downy mildew disease. Genotypes Harla White, Deko White, Composite 16 White and Giza White showed superiority in TSS% and BDM% under both control and no control conditions of downy mildew disease. Genetic parameters, viz., genotypic (GCV%), phenotypic (PCV%) coefficients, broad sense heritability (h_{bs}^2) , genetic advance (GA) and genetic advance as percentage of mean (GAM%) were estimated. Estimates of PCV were medium for TY, MY, ABW, NGC, TSS and DM, and high for DS%. Estimates of GCV were medium for TY, MY, ABW, NGC, TSS% and DM%, and high for DS%. Most of the studied traits showed low estimates of GA and high estimates of GAM% and h_{bs}^2 . One selection cycle was carried out to select bulbs of cvs Giza White and Giza 20 with high TSS% (H-TSS-P₁), low TSS% (L-TSS-P₁) and bulbs with SGC (SGC-P₁) to improve their internal bulb quality. Progenies of the three selected populations were evaluated along with original population $(O-P_0)$ in RCBD with three replicates. In cv. Giza White, one selection cycle increased TSS% from 14.6% in P_0 to 15.5% in H-TSS -P₁, decreased NGC from 2.18 in P₀ to 1.9 in SGC-P₁ and decreased TSS from 14.6% in P₀ to 14.08% in L-TSS-P₁. In cv. Giza 20, one selection cycle increased TSS% from 13.6% in P₀ to 15.4% in H-TSS-P₁, decreased NGC from 2.2 in P₀ to 1.59 in SGC-P₁ and decreased TSS from 13.6% in P₀ to 10.1% in L-TSS-P₁.

Key words: Onion, Allium cepa, bulb quality, heritability, mass selection.

LIST OF ABBREVIATIONS

Average bulb weight	:	ABW
Broad sense heritability	:	BSH
Cultivars	:	CVS
Dry matter	:	DM
Genetic advance:	:	GA
Genetic advance as percentage of mean	:	GAM%
Genotypic coefficient of variation	:	GCV%
Heritability in broad sense	:	h^2_{bs}
High total soluble solids	:	H-TSS
Low total soluble solids	:	L-TSS
Marketable yield	:	MY
Number of growing centers	:	NGC
Original population	:	\mathbf{P}_0
Phenotypic coefficient of variation	:	PCV%
Randomized complete block design	:	RCBD
Response to selection	:	R
Realized heritability	:	h²
Selected population	:	P _s
Selection differential	:	S
Single center	:	S-C
Single growing center	:	SGC
The progeny of selected population	:	\mathbf{P}_1
Total soluble solids	:	TSS
Total yield	:	TY
Weight loss	:	WL

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Performance of onion genotypes	4
a. Vegetative characters	4
b. Yield and its components	7
c. Bulb quality characters	10
d. Storability	14
2. Evaluation for downy mildew resistance	15
3. Genetic parameters	19
a. Vegetative characters	19
b. Yield and its component	24
c. Bulb quality characters	26
d. Storability	32
4. Onion improvement	33
MATERIALS AND METHODS	38
1. Performance of onion genotypes	38
Data Collected	
a. Vegetative traits	38
b. Disease severity (%) of downy mildew	41
c. Yield characters	42
d. Bulb quality characters	42
e. Storability	43
2. Statistical analysis and estimated genetic parameters	43
3. Improvement of onion builds quality in cvs Giza white	16
allu Giza 20 a. Genetic improvement of Giza White cultivar for hulb	40
a. Genetic improvement of Giza winte cuttival for build	46
h Genetic improvement of Giza 20 cultivar for hulb	-10
quality	47
c. Characters measured	48
d. Statistical and genetic parameters	49

CONTENTS (Continued)

RESULTS AND DISCUSSION	50
1. Analysis of variance	50
2. Performance of genotypes	55
a. Vegetative Characters	55
(1) Plant height	55
(2) Number of leaves	58
(3) Leaf fresh weight per plant	62
(4) Leat dry weight per plant	65
(5) Disease severity (DS %)	69 72
0. Yield Characters	73
(1) Fotal yield	13
(2) Marketable yield	TT
(3) Culls yield	81
c. Bulb quality Characters	84
(1) Average bulb weight	84
(2) Bulb diameter	87
(3) Bulb height	91
(4) Number of complete rings	94
(5) Number of growing centers	98
(6) Bulb Total soluble solids	101
(7) Bulb dry matter percentage	105
d. Storage ability Characters	108
Weight loss percentage	108
3. Genetic Parameters	111
a. Vegetative characters	111
(1) Plant height	111
(2) Number of leaves	112
(3) Leaves fresh weight per plant	113
(4) Leaves dry weight per plant	114
(5) Disease severity	115

CONTENTS (Continued)

b. Yield and its component 118	8
(1) Total yield 118	8
(2) Marketable yield 120	0
(3) Culls yield 120	0
c. Bulb quality characters 121	1
(1) Average bulb weight 121	1
(2) Bulb diameter 122	2
(3) Bulb height 124	4
(4) Number of complete rings 124	4
(5) Number of growing centers	6
(6) Bulb total soluble solids% 127	7
(7) Bulb dry matter percentage 128	8
(8) Weight loss percentage 129	9
4. Genetic improvement of cvs Giza White and Giza 20 130	0
a. Selection in cv. Giza White 130	0
(1) Performance of original population cv. Giza White 130	0
(2) Genetic parameters 133	3
(3) Selection parameters	6
b. Selection in cv. Giza 20 137	7
(1) Performance of original population cv. Giza 20 137	7
(2) Genetic parameters 140	0
(3) Selection parameters	2
SUMMARY	4
REFERENCES	8

LIST OF TABLES

No.	Title	Page
1.	Name, origin, bulb color and method of developing the evaluated onion genotypes	39
2.	Monthly rain precipitation (mm); maximum and minimum air temperature, and relative humidity % at Giza Research Station (Giza Province) during 2015/2016 and 2016/2017 growing seasons	40
3.	Analysis of variance and expected mean squares for the data of each season in both experiments.	43
4.	Combined analysis of variance and expected mean squares across the two seasons	44
5.	Estimates of sum squares due sources of variation for the studied characters in some onion genotypes evaluated under conditions of control and without control of downy mildew disease in the 2015/2016 and 2016/2017 seasons and over combined analysis	51- 54
6.	Performance of onion genotypes evaluated for plant height under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	57
7.	Performance of onion genotypes evaluated for number of leaves per plant under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	61

8.	Performance of onion genotypes evaluated for leaves fresh weight per plant under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	64
9.	Performance of onion genotypes evaluated for leaves dry weight per plant under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	68
10.	Performance of onion genotypes evaluated for disease severity (%) under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	2
11.	Performance of onion genotypes evaluated for total yield under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	76
12.	Performance of onion genotypes evaluated for marketable yield under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	80
13.	Performance of onion genotypes evaluated for culls yield under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	33

14.	Performance of onion genotypes evaluated for average bulb weight under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	86
15.	Performance of onion genotypes evaluated for bulb diameter under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	90
16.	Performance of onion genotypes evaluated for bulb height under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	93
17.	Performance of onion genotypes evaluated for number of complete rings under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	97
18.	Performance of onion genotypes evaluated for number of growing centers under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	100
19.	Performance of onion genotypes evaluated for total soluble solids (TSS%) under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	104

20.	Performance of onion genotypes evaluated for dry matter percentage under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	107
21.	Performance of onion genotypes evaluated for weight loss percentage under conditions of control and no control of downy mildew disease in the 2015/2016 and 2016/2017 seasons	110
22.	Estimates of phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability in broad sense (h_{bs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for plant height and number of leaves characters of 15 onion genotypes evaluated in 2015/2016 and 2016/2017 seasons	113
23.	Estimates of phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability in broad sense (h_{bs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for leaves fresh weight and leaves dry weight Characters of 15 onion genotypes evaluate in 2015/2016 and 2016/2017 seasons	115
24.	Estimates of phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability in broad sense (h_{bs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for diseases severity 15 onion genotypes evaluated under control and no control of downy mildew disease in 2015/2016 and 2016/2017 seasons	116

Estimates of phenotypic (PCV) and genotypic (GCV) 25. coefficients of variation, heritability in broad sense (h_{hs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for yield characters of 15 onion 119 genotypes evaluate in 2015/2016 and 2016/2017 Estimates of phenotypic (PCV) and genotypic (GCV) 26. coefficients of variation, heritability in broad sense (h_{hs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for average bulb weight and bulb diameter Characters of 15 onion genotypes evaluate in 123 2015/2016 and 2016/2017 seasons..... Estimates of phenotypic (PCV) and genotypic (GCV) 27. coefficients of variation, heritability in broad sense (h_{bs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for bulb height and number of complete rings Characters of 15 onion genotypes evaluate in 125 2015/2016 and 2016/2017 seasons..... 28. Estimates of phenotypic (PCV) and genotypic (GCV) coefficients of variation, heritability in broad sense (h_{bs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for No. of growing centers and TSS% characters of 15 onion genotypes evaluate in 2015/2016 127 and 2016/2017 seasons..... Estimates of phenotypic (PCV) and genotypic (GCV) 29. coefficients of variation, heritability in broad sense (h_{bs}^2) , genetic advance (GA) and GA as percentage of mean (GAM) for dry meter% and weight loss percentage Characters of 15 onion genotypes evaluate 129 in 2015/2016 and 2016/2017 seasons.....

30.	Performance of original population (P_0) and the progeny of the populations selected from cv. Giza White evaluated in the 2016/2017 season for yield and bulb quality characters.	131
31.	Estimates of some genetic parameters for yield and bulb quality characters in cv. Giza White populations evaluated in the 2016/2017 season	134
32.	Performance of original population (P_0), selected population (P_s) and the progeny of the selected sample (P_1) for bulb characters studied in cv. Giza White evaluated in the 2016/2017 season	137
33.	Performance of original population (P_0) and the progeny of the populations selected from cv. Giza 20 evaluated in the 2016/2017 season for yield and bulb quality characters.	139
34.	Estimates of some genetic parameters for yield and bulb quality characters in cv. Giza 20 populations evaluated in the 2016/2017 season	141
35.	Performance of original population (P_0), selected population (P_s) and the progeny of the selected sample (P_1) for bulb characters studied in cv. Giza 20 evaluated in the 2016/2017 season	143