

Benha University Faculty of Veterinary Medicine Department of Bacteriology, Immunology and Mycology

Mycological and molecular studies on some fungi associated respiratory manifestation in ruminant

A thesis presented by

Ahmed Abo El yazeed Fawaz Ahmed Fawaz

(B. V. Sc., 2010 Cairo University) (M.V. Sc., 2015 Cairo University)

Under the supervision of Prof. Ashraf Awaad Abd El- Tawab

Prof. and head of Bacteriology, Immunology and Mycology, Fac. of Vet. Med., Benha University

Prof. Eman Mahmoud El- diasty

Chief Researcher and head of Mycology department, Animal Health Research institute, Dokki- Giza.

For

Ph.D. degree in Veterinary Medical SciencesFac. of Vet. Med., Benha University(Bacteriology, Immunology and Mycology)

2021

Title		
1.	Introduction	1
2.	Review of literature	5
2.1.	Predisposing factor for causing respiratory diseases	5
2.2.	Incidence of fungi associated with pneumonia in Ruminants::	8
2.3.	Detection of fungi by using fluorescence light microscopy	14
2.4.	Virulence factors of some fungal isolates	18
2.5.	RapID yeast plus system identification to yeast	21
2.6.	Detection of fungi by PCR	24
2.7	Antifungal sensitivity	30
3.	Material and Methods	32
3.1.	Material	32
3.1.1.	Collection of samples	32
3.1.2.	Media and Reagents	32
3.2.3.	Chemicals and reagents used for polymerase chain reaction (PCR) and gel electrophoresis	36
3.3.	Methods	38
3.3.1.	Cultivation of sampling	38
3.3.2.	Identification of isolated moulds	39
3.3.3.	Identification of Yeasts	40
3.3.3.5.	RapID Yeast plus System:	41
3.3.4.	Tissue Preparation for Histopathological Studies	43
3.3.5.	Proteolytic activity for isolated fungi	43
3.3.6.	Determination of haemolytic activity	44
3.3.7.	Antifungal susceptibility testing	44

CONTENTS

3.3.8.	Methods for PCR	45
3.3.9.	Sequencing and Phylogenetic analysis	49
4.	RESULTS	50
5.	DISCUSSION	70
6.	CONCLUSION	77
7.	SUMMARY	78
8.	REFERENCES	81
9.	Arabic summary	1

	Title	Page
Table (1)	Primer used in PCR reactions for the detection of	37
	Aspergillus fumigatus and Cryptococcus albidus	
Table (2)	PCR protocol for amplification conditions of PCR	46
	products	
Table (3)	PCR protocol for amplification conditions of A. fumigatus	47
	virulent gene primer	
Table(4)	PCR protocol for amplification conditions of	47
	Cryptococcus albidus.	
Table (5)	Prevalence of fungi isolated from pneumonic lung	50
	tissues of examined samples	
Table (6)	Prevalence of fungi isolated from nasal swabs of	51
	examined samples	
Table (7)	Prevalence of mycotic pneumonia in examined	51
	infected animals	
Table (8)	Prevalence of isolated mould species from large	52
	ruminant suffering from pneumonia examined samples	
Table (9)	Prevalence of isolated mould species from small	53
	ruminant suffering from pneumonia examined samples	
Table (10)	Prevalence of isolated yeast species from large ruminant	54
	suffering from pneumonia examined samples	
Table (11)	Prevalence of isolated yeast species from small	54
	ruminant suffering from pneumonia examined samples	
Table (12)	Proteolytic activity and Hemolytic activity of some	56
	1solated fungi	
Table (13)	In vitro antifungal susceptibility testing of fungi	58
	isolates.	

LIST OF TABLES

LIST OF FIGURE

	Title	Page
Figure (1)	Lung tissues: photo (A) examined with ordinary light, photos B,	43
	C, D and F examined with fluorescence light. A. fumigatus and	
	Cryptococcus, Candida, A. flavus and A. niger) were showed	
	bright green autofluorescence (Stain H&E, X40).	
Figure (2)	((A) RapID Yeast plus System for Cryptococcus albidus,(B)	62
	Cryptococcus albidus Tobacco agar,(C) Cryptococcus albidus stained	
	with Indian ink,(D) Proteolytic activity of A. fumigatus on yeast	
	extract peptone agar plate, (F) Proteolytic activity of C . albicans on	
	yeast extract peptone agar plate, (G) Haemolytic activity of	
	microscope 40X (I) A funigatus on malt extract agar	
Figure (3)	Electrophoretic pattern of PCR products on 1.5 %	63
8	of agarose gel electrophoresis stained with	
	Ethidium promide (<i>Cryptococcus albidus</i>)	
Figure (4)	Electrophoretic pattern of PCR products on 1.5 % of	64
_	agarose gel electrophoresis stained with Ethidium	
	promide (A. fumigatus)	
Figure (5)	Electrophoretic pattern of PCR products on 1.5 % of	65
	agarose gel electrophoresis stained with Ethidium	
	promide (A. fumigatus virulent aspHS gene)	
Figure (6)	Multiple alignment of deduced amino acid sequence of	66 -
	A. fumigatus Fawaz.A.EG. pepi E4	67
Figure (7)	Percentage identity of A. fumigatus Fawaz.A.EG.	68
	pepi E4 Asphs gene sequences	
Figure (8)	Phylogenetic tree of nucleotide sequences of A. fumigatus	69
	Fawaz.A.EG. Asphs virulent gene compared to published sequences	

7. SUMMARY

A total of 200 samples from large and small ruminant animals (cattle, cow, sheep and goats 50 samples from each) in Garbia governorate. Samples collected from diseased animal suffering from respiratory manifestation. Tissue specimens from lungs were taken from the affected freshly slaughtered animals (100 in numbers). Nasal swabs were aseptically taken from the nasal clift of the respiratory affected animals (100 in number).

The prevalence of fungi associated with pneumonia were 9, 10,15 and 6 positive samples from 100 lung samples of buffalo, Cow, Sheep and goat, respectively. The prevalence of fungal isolation from nasal swabs of examined samples from animal suffering of respiratory manifestation, 100 nasal swabs examined samples (25 from buffalo, Cow, Sheep and goat) 12,15,9 and 7 positive samples from buffalo, Cow, Sheep and goat, respectively.

From lung and nasal swabs examined samples 3 mould and 2 yeast genera isolated, Aspergillus spp., Penicillium spp. and Mucor spp. While yeast genera Candida spp. and Cryptococcus spp.

The mould species were isolated from buffaloes and cow examined samples collected from Garbia governorate and the most isolated mould species from the cow and buffalo samples (lung lesion and nasal swabs) were *A. fumigatus* from lung lesions and nasal swabs, respectively. While the following isolated strain was *A. niger*, followed by *A. flavus* from lung lesions and nasal swabs, respectively. There were another different species isolated, including Penicillium species from lung lesions and nasal swabs, respectively. While the least isolated strain was Mucor spp from the buffalo and cow from lung lesions and nasal swabs, respectively.

Aspergillus fumigatus takes the majority of the isolated mould strains from the pneumonia samples in lung tissue and nasal swab sheep and goats examined samples, respectively. Followed by *A. flavus*, *A. niger*, Penicillium spp. and the least isolated strains was Mucor spp.

Candida albicans isolated from buffalo lung tissue, buffalo nasal swab, cow lung tissue and cow nasal swab, respectively. Followed by *C. gullermondii* and *C. tropicalis*. The least isolated strains were *Cryptococcus albidus* where isolated only from buffalo and cow lung tissues.

Yeast genera isolated from the lung and swabs samples collected from sheep and goats in different percentages that were *C. albicans, C. gullermondii C. tropicalis* and *Cryptococcus albidus. C. gullermondii* and *C. tropicalis* were the most predominant isolated yeast genera from the collected samples ,followed by *Cryptococcus albidus* was isolated from lung samples collected from sheep and goats, respectively.

The autofluorescence fungal species identified were *A. fumigatus* and Cryptococcus, Candida, *A. flavus* and *A. niger* within lung tissues and they exhibited strong enough fluorescence that the technique could be helpful. The architectural detail of bright green to yellow green autofluorescence. In control cases (negative mycotic isolation) did not show any autofluorescence.

The proteolytic and hemolytic activities were determined to twenty one isolated mould and yeast strains isolated from mycotic pneumonia examined samples. From our results observed that *A. fumigatus*, *A. flavus*, *A. niger*, *Penicillium spp., Mucor spp., C. albicans* and *C. tropicalis* produce the large zone for proteolytic, While, *C. gullermondii* and *Cryptococcus albidus* not produce proteolytic activity. Hemolytic activity among the different isolated moulds and yeast *A. fumigatus*, *A. flavus*, *A. niger and C. albicans* produce larger zone for hemolytic activity (25-34mm,20-31mm, 30-31mm and 23 -26mm) than *C. tropicalis* (12mm).

Itraconazole and Voriconazole were the effective antifungal against *A. fumigatus* while, Nystatin more effective against *A. flavus*, *A. niger*, Penicillium spp., *C. albicans*, *C. gullermondii* and *C. tropicalis* after *Amphotericin B*, while Voriconazole was the least used antifungal in its effect against the tested strains and Amphotericin B was only effect on *Cryptococcus albidus*.

Molecular characterization of three *Cryptococcus albidus* isolates which had previously been identified biochemically with RapID yeast plus system was molecularly identified using The PCR primers used Forward CNa-70-S 5 'ATTGCGTCCACCAAGGAGCT-3 and Reverse CNa-70-A 5 'ATTGCGTCCATGTTACGTGGA -3 oligonucleotide primers used in PCR reactions. The size of the resulting amplicons at bp 500.

Five *A. fumigatus* isolates examined by Polymerase chain reaction for detection *A. fumigatus* virulent gene (*aspHS*). PCR products of strains were positive on agarose gel electrophoresis, PCR reactions at bp 180. One of these 5 strains was successfully amplified and sequenced. The obtained sequences were deposited at NCBI under accession no. (Gene bank accession number: **MW546778**).The analysis for the sequence data obtained from the sequence application analyzed and aligned by clustal method using the program DNA star (Lasergene, Wisconsin, USA) for *A. fumigatus* isolated from cow (isolate number *A. fumigatus*. Fawaz. A. EG. pepi E4 in this study) determined the differences and similarity percentage for the *AspHS* gene.