

Benha University
Faculty of Veterinary Medicine
Department of Food Hygiene and Control

Molecular and conventional methods for detection of Campylobacter Jejuni in marketed poultry products

Thesis submitted to
Faculty of Veterinary Medicine
Benha University

Presented By Yahya Mohammady Ghrieb Mansour Nassar

(B.V.Sc., Menoufia University, 2008) (M.V.Sc., Zagazig University, 2015)

For The Degree of Ph.D. in Veterinary Science (Meat Hygiene)

Under Supervision of

Prof. Amani Mohamed Salem

Professor of Meat Hygiene
Faculty of Veterinary Medicine
Benha University

Dr. Mohammed Ahmed H. EL-Shater

Chief Researcher of Food hygiene Animal Health Research Institute Dokki, Cairo

Dr. Nahla Ahmed Abou El Roos

Chief Researcher of Food Hygiene Animal Health Research Institute, Shebin El Kom Branch

(2020)

List of contents	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	٤
Part I	
2.1. Sources of contamination of chicken products with	٤
Campylobacter jejuni	
2.3. Public health hazards of Campylobacter jejuni	١.
2.4. Polymerase Chain Reaction (PCR) confirmation	1 £
Part Π	
2.°. Antibacterial effect of thyme and coriander (1% - 2%) in	۱۸
reduction of Campylobacter jejuni in chicken meat	
2.°.1. Antimicrobial properties of essential oils	١٨
2.°.2. Mechanism action of essential oils	۲۱
2.0.3. Susceptibility of Gram positive and Gram negative organisms to	25
essential oils.	
2.5.4. Application of essential oils as antimicrobials in meat	26
2.5.5. Challenges in application of essential oils in food	30
2.5.6. Thyme EO as antimicrobial in meat	32
2.5.7. Coriander EO as antimicrobial in meat	35
3. MATERIAL AND METHODS	37
Part I	37
Part II	44
4. RESULTS	52
5.DISCUSSION	61
6. CONCLUSION AND RECOMMENDATIONS	69
7.SUMMARY	73
8. REFERENCES	75
9. ARABIC SUMMARY	-

LIST OF TABLES

Table	Title	Page
Table (1):	Incidence of Campylobacter in the examined chicken cuts, offal and processed samples.	52
Table (2):	Serotyping of Campylobacter strains isolated from examined chicken meat samples (n= 25).	53
Table (3):	Incidence of hipO (323 bp) as confirmatory gene for detection of <i>Campylobacter jejuni</i> using Agarose gel electrophoresis of PCR (n=25)	54
Table (4):	Occurrence of virulence genes of <i>C. jejuni</i> toxins isolated from the examined chicken meat samples (n= 20).	56
Table (5):	Effects of various concentrations of thyme and coriander on overall acceptability of the examined chicken meat inoculated with <i>C. jejuni</i> at cold storage (4°C).	58
Table (6):	Antimicrobial effect of different concentrations of Thyme and Coriander oils on <i>C. jejuni</i> (cfu/g) artificially inoculated in minced chicken breast meat at cold storage (4°C).	59
Table (7):	Reduction percent of <i>C. jejuni</i> growth artificially inoculated into minced chicken breast meat samples treated with different concentrations of Thyme and Coriander essential oils.	60

LIST OF FIGURES

Figure	Title	Page
Figure (1)	Incidence of <i>Campylobacter</i> in the examined chicken cuts, giblets and processed samples.	52
Figure (2)	Serotyping of Campylobacter strains isolated from .examined samples	53
Figure (3)	Agarose gel electrophoresis of PCR of hipO (323 bp) as confirmatory gene for detection of <i>Campylobacter jejuni</i> .	54
Figure (4)	Agarose gel electrophoresis of multiplex PCR for cytological distending toxins cdtA (631 bp), cdtB (714 bp) and cdtC (524 bp) as virulence genes for characterization of <i>Campylobacter jejuni</i> .	55
Figure (5)	Occurrence of virulence genes of <i>C. jejuni</i> toxins isolated from the examined samples of chicken meat samples (n= 20).	57
Figure (6)	Effects of various concentrations of Thyme and Coriander on overall acceptability of the examined chicken meat inoculated with <i>C. jejuni</i> at cold storage (4°C).	58
Figure (7)	Reduction % of <i>C. jejuni</i> growth artificially inoculated into cold stored (at 4°C) minced chicken breast meat samples treated with different concentrations of Thyme and Coriander essential oils.	60

7. SUMMARY

Part I:

A total of 200 random samples of chicken products represented by chicken breast with skin & without skin, thigh with skin &without skin, liver, gizzard, nuggets and luncheon (25 of each) were collected from different markets in Menofia Governorate, Egypt.

The results revealed that the incidence of *Campylobacter spp*. was positive for all samples except chicken luncheon. The highest incidence was found in chicken liver and gizzard (80 %) followed by thigh with skin(72 %), thigh without skin (68 %), breast with skin (60 %) breast without skin (48 %).and the lowest one was chicken nuggets(20 %).

It is evident from results that the incidence of *C. jejuni*, *C.coli* and *C.butzieri* were 24 %, 20 % and 12 % in breast with skin; *C. jejuni*, *C.coli* and *C.lari* were 20 %, 16 % and 8 % in breast without skin; *C. jejuni*, *C.coli* and *C.lari* and *C.cinaedi* were 36 %, 16 %, 8% and 8 % in thigh with skin; *C. jejuni*, *C.coli*, *C.lari* and *C.upsaliens* were 28 %, 8 %, 12 % and 8 % in thigh without skin; *C. jejuni*, *C.coli*, *C.lari* and *C.cinaedi* were 52 %, 20 %, 8 % and 4 % in liver. *C. jejuni*; *C.coli* and *C.lari* were 44 %, 24 % and 12 % in gizzard and *C. jejuni* & *C.coli* were 16 % and 4 % in nuggets, respectively.

Furthermore, the Occurrence of virulence genes of *C. jejuni* strains isolated from all the examined samples of chicken products except luncheon. Virulence genes *cdtA*, *cdtB* and *cdt C*, *cdtA* and *cdtC*, *cdtB* and *cdtC*, *cdtB* and *cdtC*, *cdtB*, *cdtB* and *cdtC* were present in 30%, 15%, 25%, 10%, 15 and 5 of examined of strain of *c.jejuni* respectively.

Part II:

A total of 1500 g of minced chicken breast meat were divided into 5 equal groups (300 g of each). *Campylobacter jejuni* was inoculated into each group with infective dose 2.5x10⁷cfu/g. Each group divided for (Sensory Examination - Chemical Examination and Bacteriological Examination) for each.

Thyme oil (2%) showed overall acceptability extended to 5th day of storage. While, lower concentration (1%) showed overall acceptability extended till 4th day. In comparison, coriander oil (2% and 1%) showed overall acceptability extended to 4th day. In contrast, the control group showed overall acceptability extended to 2nd day.

Thyme oil (1 and 2%) decreased count of *Campylobacter jejuni* (cfu/g) from 3.8×10^7 (initial load) to 7.3×10^5 , and 1.2×10^3 with reduction percentages 97.27% and 99.99% on 6th day of storage, respectively.

Coriander oil (1 and 2%) decreased count of *Campylobacter jejuni* (cfu/g) to 3.8×10^6 and 9.5×10^5 with reduction percentages 85.00% and 96.27% on 6th day of storage, respectively.

In conclusion, using of molecular methods like PCR, hipO gene and cytolethal distending toxin (cdt) is very important for accurate identification and characterization of *Campylobacter jejuni* and the virulence genes of *C. jejuni* strains, also thyme oils proved to be more efficient than Coriander in reduction of *Campylobacter jejuni* growth in minced chicken meat; therefore, it is recommended to improve safety of the chicken meat products by essential oils.