

Zagazig University Faculty of Science Botany and MicrobiologyDepartment

BIOLOGICAL CONTROL OF SOME SUCKING PESTS

BY

MONA SOLIMAN AHMED ELFALOGI

B. Sc. Botany and Chemistry (2005) Faculty of Science, Zagazig University

A thesis submitted in Partial fulfillment

Of

the requirements for the degree of

MASTER OF SCIENCE

In

(Microbiology)

Department of Botany and Microbiology

Faculty of Science Zagazig University 2020

ABSTRACT

During this study, we used entomopathogenic fungi Verticillium lecanii as abiological control for Aphis gossypii Glover. The effect of physical factors as incubation temperature, incubation period, PH values, utilization of different media for fungal growth, nutritional factors, degrading enzyme activities and laboratory efficacy of Verticillium lecanii were studied. Survey and population density of certain insect pests infesting cucumber plants and their natural enemies were carried out in the newly reclaimed sandy area of El-Salhia district, Sharkia Governorate, Egypt. Field experiments were conducted during summer and autumn plantations during the two seasons of 2017 and 2018. Cucumber plant is subjected to be attacked by several major piercing-sucking insect pests which cause severe damage. The most dangerous pests are the two aphid species Myzus persicae Sulzer and Aphis gossypii Glover; whitefly Bemisia tabaci Genn. and thrips *Thrips tabaci* Lind. Insect predators associated with the abovementioned cucumber insect pests had been surveyed and recorded as following: Orius leavigatus Fieb., Orius albidipennis Reut., Coccinella septumpunctata L., Coccinella undecimpunctata L., Chrysoperla carnea Steph., and Metasyrphus corolla F. The insect parasitoid species were the primary parasitoid *Diaeretiella* rapa M'Intosh., Aphidius colemani Viereck., and the hyper parasitoid Aphidencertus spp. were recorded. Effect of temperature and relative humidity on the population densities of insect pests and its associated predators and parasitoids on cucumber, were also recorded.

CONTENT

I. INTRODUCTION	1
II. AIM OF WORK	4
III. REVIEW OF LITERATURE	5
1-Survey and population density of certain insect pests infesting	
cucumber plants and their natural enemies	5
1.1.Sucking Insect pests infesting cucumber	5
1.2.Parasitoids	6
1.3.Predators	10
2-Fungi as abiological control agent	19
3-Entomopathogenic fungi associated with sucking insects	23
4-Verticillium lecanii as a biological control agent	25
5-Factors affecting entomopathogenic fungi growth	28
5.1. Effect of environmental factors on entomopathogenic fungi	
growth	28
5.2. Effects of nutritional factors on entomopathogenic fungi	
growth	32
6- Insect cuticle and their degrading enzymes	35
7- Efficacy of Verticillium lecanii on Aphis gossypii (Glover.)	39
IV. MATERIALS and METHODS	43
1- Survy of insect pests at different seasons	43

2-Survey and seasonal abundance of certain pests and associated	
predators in cucumber	
3. Microorganism used in this study	•
4. Media used for isolation, purification and identification	
of entomopathogenic fungi	
4.1.Czapek-Dox's agar medium	
4.2. Potato-dextrose agar (PDA)	
4.3. Sabouraud dextrose agar (SDA)	
4.4. Malt extract agar	
4.5.Yeast extract – sucrose agar medium	
5. Maintenance of the stock fungal culture	
6. Factors affecting growth of <i>Verticillium lecanii</i>	
6.1. General cultivation conditions	
6.1.1. Preparation of inocula	
6.1.2. Cultivation	
6.1.3. Determination of mycelial dry weights	
6.2. Environmental factors	
6.2.1 Cultivation media	
6.2.2. Incubation temperature	
6.2.3. Incubation period.	
6.2.4. pH values	
6.3. Nutritional factors	
6.3.1. Carbon source	
6.3.1.1. Concentration of maltose	
6.3.2. Nitrogen source	
6.3.2.1. Concentration of NaNO ₃	

6.3.3. Phosphorus source	49
6.3.3.1. Concentration of KH ₂ Po ₄	49
7. Detection of cuticle degrading enzymes	49
7.1. Detection of proteolytic activity	50
7.1.1. Media used for detection of proteolytic activity	50
7.1.2. Assay of protease activity	50
7.2. Detection of lipase activity	50
7.2.1. Media used for detection of lipase activity	50
7.2.2. Assay of lipase activity	51
7.3. Detection of chitinolytic activity	51
7.3.1. Media used for detection of chitinolytic activity	51
7.3.2. Colloidal chitin preparation	51
7.3.3 Assay of chitinase activity	52
7.4. Determination of the extracellular protein	53
8. Laboratory evaluation of Verticillium lecanii on	
Aphis gossypii (Glover.)	54
V. RESULTS	55
PART ONE	
1.Ecological studies	55
1.1.Survey of insect pests and their (predators and parasitoids)	
associated with cucumber plant	55
1.2.Population density of insect pests infesting cucumber plants	56
1.3.Population density of insect predators associated with insect	
pests infesting cucumber plants	56

1.4.Seasonal abundance of the insect pests infesting cucumber		
vegetable plants		
1.4.1. In the summer plantation	61	
1.4.2. In the autumn plantation	62	
1.5 Second show down a of the impact and down approxisted with	•=	
1.5.Seasonal abundance of the insect predators associated with	(2	
insect pests infesting cucumber vegetable plants	03	
1.5.1. In the summer plantation	63	
1.5.2. In the autumn plantation	(5	
	05	
1.6. Survey and estimation of parasitism in cucumber field	66	
1.7. Effect of temperature and relative humidity on the population		
densities of pests and its associated predators & parasitoids on		
cucumber	81	
171 Insort post		
1.7.1. Insect pest	81	
1.7.2. Insect predators	85	
1.7.3. Primary parasitoids	92	
PART TWO		
2. Factors affecting growth rate of <i>Verticillium lecanii</i>	101	
2.1. Environmental factors	101	
2.1.1. Incubation different media	101	
2.1.2. Incubation temperature	101	

2.1.3. Incubation period	101
2.1.4. pH values	105
2.2. Effect of nutritional factors	105
2.2.1. Carbon source	105
2.2.1.1. Concentration of maltose	105
2.2.2. Nitrogen sources	109
2.2.2.1. Different concentrations of NaNO ₃	109
2.2.3. Phosphorus sources	112
2.2.3.1.Different concentrations of KH ₂ PO ₄ PART THREE	112
3. Detection of cuticle degrading enzymes	115
PART FOUR	
4. Laboratory evaluation of <i>V.lecanii</i> spores suspension on <i>A.gossypii</i> (Glover)	116
VI. DISCUSSION	120
VII. SUMMARY	128
VIII. REFERENCES	132
ARABIC SUMMARY	

LIST OF TABLE

Table	Title	Page
1	Total numbers of different insect pests and the associated insect predators with cucumber cultivated during four different plantations of 2017 and 2018	
		58
2	Weekly total number of certain insect pests infesting cucumber plants and their associated insect predators during summer plantation of 2017	68
3	Weekly total number of certain insect pests infesting cucumber plants and their associated insect predators during autumn plantation of 2017	70
4	Weekly total number of certain insect pests infesting cucumber plants and their associated insect predators during summer plantation of 2018	72
5	Weekly total number of certain insect pests infesting cucumber plants and their associated insect predators during autumn plantation of 2018	74
6	Relative density of <i>Aphis gossypii</i> and <i>Myzus persicae</i> parasitoids on cucumber plants during two successive	
7	Population density and percentages of parasitism on <i>Aphis</i> gossypii and <i>Myzus persicae</i> by <i>Diaeretiella rapae</i> and	76

	Aphidius colemani during summer of 2017	77
8	Population density and percentages of parasitism on Aphis	
	gossypii and Myzus persicae by Diaeretiella rapae and	
	Aphidius colemani during summer of 2018	79
9	Simple correlation among certain insect pests and their	.,
	natural enemies on cucumber, maximum temperature,	
	minimum temperature, mean relative humidity during two	
	summer seasons of 2017 and	
	2018	95
10	Partial regression among certain insect pests and their	
	natural enemies on cucumber, maximum temperature.	
	minimum temperature, mean relative humidity during two	
	summer seasons of 2017 and	
	2018	96
11	Explained variance and un explained variance among	
	pests and their natural enemies on cucumber maximum	
	temperature minimum temperature mean relative	
	humidity during two summer seasons of 2017 and 2018	97
12	Simple correlation among certain insect pests and their	71
12	natural enemies on cucumber maximum temperature	
	minimum temperature, mean relative humidity during two	
	autumn seasons of 2017 and	
	2018	98
13	Partial regression among cartain insect pasts and their	
15	ratural enamics on ensumber maximum temperature	
	matural enemies on cucumber, maximum temperature,	
	aumment emperature, mean relative number during two	
	summer seasons of 2017 and	99
	2018	

VI

	insect pests and their natural enemies on cucumber,	
	maximum temperature, minimum temperature, mean	
	relative humidity during two autumn seasons of 2017 and	100
	2018	100
15	Effect of different culture media on growth (mycelia dry	
	weights) of Verticillium lecanii laboratory conditions of	
	$65\% \pm 5$ RH% and 12 hr photoperiod after 7 days	103
16	Effect of different incubation temperatures on growth	102
	(mycelia dry weights) of Verticillium lecanii laboratory	
	conditions of 65% \pm 5 RH% and 12 hr photoperiod after 7	
	days	103
17	Effect of different incubation periods on growth (mycelial	100
	dry weights) of Verticillium lecanii under laboratory	
	conditions of 25 \pm 1°C, 65% \pm 5 RH% and 12 hr	
	photoperiod	104
18	Effect of different levels of pH values on growth (mycelial	101
	dry weights) of Verticillium lecanii under laboratory	
	conditions of 25 \pm 1°C, 65% \pm 5 RH% and 12 hr	
	photoperiod after 7 days	106
19	Effect of different Carbone sources on growth (mycelial	100
	dry weights) of Verticillium lecanii under laboratory	
	conditions of 25 \pm 1°C, 65% \pm 5 RH% and 12hr	
	photoperiod after 7days	107
20	Effect of different concentrations of maltose on growth	107
	(mycelial dry weights) of Verticillium lecanii under	
	laboratory conditions of 25 \pm 1°C, 65% \pm 5 RH% and 12	
	hr photoperiod after 12 days	108

Explained variance and un explained variance among

14

VII

21	Effect of different nitrogen sources on growth (mycelial	
	dry weights) of Verticillium lecanii under laboratory	
	conditions of 25 \pm 1°C, 65% \pm 5 RH% and 12 hr	
	photoperiod after 7 days	110
22	Effect of different concentrations of NaNO3 on growth	110
	(Mycelial dry weights) of Verticillium lecanii under	
	laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$ RH% and 12	
	hr photoperiod after 7 days	111
23	Effect of different phosphorus sources on growth	111
	(mycelial dry weights) of Verticillium lecanii under	
	laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$ RH% and 12	
	hr photoperiod after 7 days	113
24	Effect of different concentrations of KH ₂ PO ₄ on growth	
	(mycelial dry weights) of Verticillium lecanii under	
	laboratory conditions of 25 \pm 1°C, 65% \pm 5 RH% and 12	
	hr photoperiod after 7 days	114
25	Protease, lipase and chitinase activities (unit/mL) of	
	Verticillium lecanii under laboratory conditions	115
26	Mortality percentages of Aphis gossypii after application	
	with different concentrations of Verticillium lecanii	
	spores suspension under laboratory conditions of 25 \pm	
	1° C, $65\% \pm 5$ RH% and 12 hr photoperiod	116
		110

LIST OF FIGURES

Fig	Title	Page
1	Total numbers of different insect pests on	
	cucumber cultivated during four different	
	plantations of 2017 and 2018	50
2	Total numbers of different insect predators	39
	associated with insect pests on cucumber	
	cultivated during four different plantations of	
	2017 and 2018	60
3	Seasonal abundances of certain pests infesting	00
	cucumber plants and their associated insect	
	predators during summer plantation of	
	2017	69
4	Seasonal abundances of certain pests infesting	02
	cucumber plants and their associated insect	
	predators during autumn plantation of	
	2017	71
5	Seasonal abundances of certain insect pests	
	infesting cucumber plants and their associated	
	insect predators during summer plantation of	
	2018	73
6	Seasonal abundances of certain insect pests	
	infesting cucumber plants and their associated	
	insect predators during autumn plantation of	
	2018	75
7	Relative density of Aphis gossypii and Myzus	
	persicae parasitoids on cucumber plants during	
	two successive seasons	76

8	Population density and percentages of parasitism	
	on Aphis gossypii and Myzus persicae in	
	cucumber plants during summer plantation of	
	2017	78
9	Population density and percentages of parasitism	70
	on Aphis gossypii and Myzus persicae by D.rapae	
	and A.colemani on cucumber plants during	
	summer plantation of 2017	80
10	Effect of different culture media on growth	00
	(mycelia dry weights) of Verticillium lecanii	
	laboratory conditions of 65% \pm 5 RH% and 12 hr	
	photoperiod after 7 days	102
11	Effect of different incubation temperatures on	102
	growth (mycelia dry weights) of Verticillium	
	lecanii laboratory conditions of 65% \pm 5 RH%	
	and 12 hr photoperiod after 7 days	103
12	Effect of different incubation periods on growth	100
	(mycelial dry weights) of Verticillium lecanii	
	under laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$	
	RH% and 12 hr photoperiod	104
13	Effect of different levels of pH values growth	201
	(mycelial dry weights) of Verticillium lecanni	
	under laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$	
	RH% and 12 hr photoperiod after 12 days	106
14	Effect of different carbon sources on growth	
	(mycelial dry weights) of Verticillium lecanii	
	under laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$	
	RH% and 12 hr photoperiod after 12 days	107

15	Effect of different maltose concentration on	
	growth (mycelial dry weights) of Verticillium	
	<i>lecanii</i> under laboratory conditions of 25 ± 1°C,	
	$65\% \pm 5$ RH% and 12 hr photoperiod after 12	
	days	108
16	Effect of different nitrogen sources on growth	
	(mycelial dry weights) of Verticillium lecanii	
	under laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$	
	RH% and 12 hr photoperiod after 7 days	110
17	Effect of different nitrogen sources on growth	110
	(mycelial dry weights) of Verticillium lecanii	
	under laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$	
	RH% and 12 hr photoperiod after 7 days	111
18	Effect of different phosphorus sources on growth	111
	(mycelial dry weights) of Verticillium lecanii	
	under laboratory conditions of $25 \pm 1^{\circ}$ C, $65\% \pm 5$	
	RH% and 12 hr photoperiod after 7 days	113
19	Effect of different concentration of KH ₂ PO ₄ on	110
	growth (mycelial dry weights) of Verticillium	
	<i>lecanii</i> under laboratory conditions of $25 \pm 1^{\circ}$ C,	
	$65\% \pm 5$ RH% and 12 hr photoperiod after 7	
	days	
		11/

114

LIST OF PLATES

Plates	Title	Page
1	Aphids infesting cucumber vegetable	
	plants at El-Salhia district, Sharkia	
	Governorate	117
2	Infected Aphis gossypii Glover after 7	
	days of Verticillium lecanii spore	
	suspension application	118
3	Infected Aphis gossypii Glover after 12	
	days of Verticillium lecanii spore	
	suspension application	119
4	White mycelial growth "white-halo" of	
	Verticillium lecanii appeard on the edges	
	of infected Aphis gossypii Glover	119