USING SOME ORGANIC HOUSE WASTE ON GREEN ROOF

Submitted By

Khaled Nasr Eldin Mohamed Shaaban

B.Sc. of Agricultural Sciences, Faculty of Agriculture, Ain Shams
University, 2001

Diploma in Environmental Sciences, Institute of Environmental Studies & Research, Ain Shams University, 2004

M. Sc. in Environmental Sciences, Institute of EnvironmentalStudies & Research, Ain Shams University, 2010

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies and Research Ain Shams University

ABSTRACT

The urban agriculture took more attention during the last two decades not just on global scale but also on local scale for many reasons such as food security and safety, climate change impacts and environmental concerns.

The study was carried out on the roof of the Central Laboratory for Agriculture Climate (CLAC), Agriculture Research Centre, Egypt, during the three years 2014, 2015 and 2016 through 2 seasons each year (summer seasons of 2014 and 2015 included tomato and molokhia while strawberry and spinach in autumn seasons of 2015 and 2016)

The study aimed to investigate the effect of different vermicompost rates mixed with standard substrate perlite (perlite: vermicompost (90:10) (Mix.10%), perlite: vermicompost (80:20) (Mix.20%), perlite: vermicompost (70:30) (Mix.30%) and perlite (100V) (Control)) and nutrient solutions sources (chemical solution, vermi-liquid and vermi-chemical at constant EC for each crop under the study) on the yield and quality of tomato and strawberry under urban agriculture conditions. Physical and chemical properties of substrates, vegetative growth, quality characteristics, yield and N, P and K of plant contents and heavy metals contents in strawberry, tomato fruits, molokhia and spinach were determined.

The obtained results showed that the vegetative and yield characteristics, chemical quality properties, N, P and K leaves contents and heavy metals contents of tomato and strawberry fruits were affected strongly by vermicompost rate mixed with substrate. The highest vegetative growth and yield characteristics and N, P and K contents of tomato and strawberry were given by chemical followed by vermi-chemical nutrient solution combined with Mix.30% followed by Mix.20% while in molokhia and spinach the

highest vegetative growth and yield characteristics were given by chemical followed by vermi-chemical nutrient solution combined with Mix.10% followed by Mix.20%.

Vermicompost either its application or increasing rate had a positive impact on reducing the heavy metals contents of tomato and strawberry fruits. The use of vermi-liquid as a nutrient solution and vermicompost as a substrate amendment had a positive impact not just on tomato, strawberry, molokhia and spinach production (food security) via urban agriculture but also on environmental issue and climate change adaptation.

Keywords:

Green roofs, urban agriculture, vermicomposting, vermicompost, nutrient solution, substrate culture, tomato, strawberry, molokhia, spinach.

LIST OF CONTENTS

No.	contents	Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	5
2.1	What is Urban Agriculture	5
2.2	Potentials and Risks of Urban Agriculture	6
2.2.1	Urban food security and nutrition	6
2.2.2	Health	7
2.2.3	Local economic development	8
2.2.4	Social inclusion and gender	8
2.2.5	Urban poverty and food insecurity	9
2.2.6	Intensified use of limited space	10
2.2.7	Urban horticulture types	12
2.3	Environmental pollution	15
2.4	Heavy metals	16
3.	Roof garden	18
3.1	Effect of roof garden on health	18
3.2	Effect of roof garden on climate	19
3.2.1	Effect of roof garden on temperature	19
3.2.1.1	Cooling [summer]	20
3.2.1.2	Thermal Insulation [winter]	21
3.2.2	Urban Heat Island Effect [albedo effect]	22
3.2.3	Effect of roof garden on noise and sound	23
3.2.4	Effect of roof garden on reduce runoff	24
3.2.5	Effect of roof garden on roof membrane	24

No.	contents	Page
3.2.6	Effect of roof garden on sound, slows winds, and aesthetically and philosophically appealing	24
3.2.7	Effect of roof garden on economic	25
3.2.8	Effect of roof garden on food production	26
3.2.9	Recycled Materials	28
4.1	New Urban Horticultural Systems	28
4.1.1	Hydroponics	29
4.2	Green buildings	32
4.3	Soilless culture	33
4.3.1	The history of soilless culture	35
4.3.2	Classification of soilless culture systems	36
4.3.3	Substrate culture	37
4.3.4.1	Classification of substrate culture	38
4.3.4.2	The physical and chemical properties of substrate	39
4.3.4.3	Inert substrates	43
4.3.4.3.1	Perlite	43
4.3.4.3.2	Vermiculite	43
4.3.4.3.3	Sand	44
4.3.4.4	Organic substrates	45
4.3.4.4.1	Peat moss	45
4.3.4.4.2	Rice hulls (Rice husk)	46
4.3.4.4.3	Peanut husk	46
4.3.4.5	Type of container	47

No.	contents	Page
4.3.4.5.1	Vertical bags	47
4.3.4.6	Type of drainage system	48
4.3.5	Effect of substrate culture	50
3.	MATERIALS AND METHODS	62
3.1	The plant material	63
3.1.1	Strawberry	63
3.1.2	Tomato	64
3.1.3	Molokhia	64
3.1.4	Spinach	64
3.2	System materials	64
3.3	The study treatments	65
3.3.1	Vermicompost proportions mixed with substrate	65
3.3.2	Nutrient solution sources	66
3.4	The vermicomposting process	67
3.5	Irrigation calculation	69
3.6	Experimental design.	70
3.7	Experimental measurements	70
3.7.1	Tomato	70
3.7.1	Vegetative growth characteristics	70
3.7.1.1	Number of leaves / plant.	70
3.7.1.1.2	Total leaf area /plant:	70
3.7.1.1.3	Stem diameter (mm)	70
3.7.1.1.4	Total chlorophyll	70
3.7.1.1.5	Average fruit firmness	70

No.	contents	Page
3.7.1.1.2	Yield	70
3.7.1.1.2. 1	Number of fruit per plant	70
3.7.1.1.2. 2	Total yield per plant	70
3.7.1.1.3	Chemical properties of yield	71
3.7.1.1.3. 1	Total acidity	71
3.7.1.1.3. 2	Total soluble solids (TSS)	71
3.7.1.1.3. 3	Ascorbic acid (Vitamin c)	71
3.7.1.1.3. 4	Lycopene (mg/100gf.w)	71
3.7.2	Strawberry	71
3.7.2.1	Vegetative growth characteristics	71
3.7.2.1.1	Number of leaves / plant	71
3.7.2.1.2	Total leaf area /plant.	71
3.7.2.1.3	Total chlorophyll:	71
3.7.2.1.4	Average fruit firmness	71
3.7.2.2	Yield	71
3.7.2.2.1	Number of fruit per plant	71
3.7.2.2.2	Total yield per plant	71
3.7.2.3	Chemical properties of yield	72
3.7.2.3.1	Total acidity	72
3.7.2.3.2	Total soluble solids (TSS)	72
3.7.2.3.3	Ascorbic acid (Vitamin c))	72
3.7.2.3.4	Total suger (g/ 100 g dry weight)	72

No.	contents	Page
3.7.2.3.5	Total anthocyanins(mg/ 100 g fresh weight)	72
3.7.3	Molokhia	72
3.7.3.1	Vegetative growth characteristics	72
3.7.3.1.1	Plant height (cm)	73
3.7.3.1.2	Total chlorophyll	73
3.7.3.2	Yield	73
3.7.3.2.1	Average leaves weight Kg/m2	73
3.7.3.2.3	Average stem weight Kg/ m2	73
3.7.3.2.5	Total plant weight Kg/m2 / season	73
3.7.4	Spinach	73
3.7.4.1	Vegetative growth characteristics	73
3.7.4.1.1	Plant height (cm)	73
3.7.4.1.2	Total chlorophyll	73
3.7.4.2	Yield	73
3.7.4.2.1	Total plant weight Kg/m2/season	73
3.7.5.	The physical and chemical properties of substrate	73
3.7.6.	The nutrient content of plants	74
3.8.	Agricultural practices	75
4.	RESULTS & DISCUSION	82-169
5.	SUMMARY AND CONCLUSION	170-197
6.	REFERENCES	198-215
7.	APPENDIX	216-227
8.	ARABIC SUMMARY	1-21

LIST OF TABLES

No.	Tables	Page
(1)	The chemical composition of different sources of nutrient solutions	66
(2)	The average of chemical composition (%) of organic urban waste.	67
(3)	Physical and chemical properties vermicompost	68
(4)	The physical properties of different substrates mix.	69
(5)	The chemical properties of different substrates mix	69
(6)	Water requirement for tomato plants (first summer season 2015)	76
(7)	Water requirement for strawberry plants (first summer season 2014)	78
(8)	Water requirement for spinach plants (first season 2015)	80
(9)	Water requirement for molokhia plants (first summer season 2015)	81
(10)	The effect of different sources of nutrient solution and vermicompost rate on vegetative and yield characteristics of tomato.	86
(11)	The effect of different sources of nutrient solution and vermicompost rate on chemical characteristics of tomato	90

No.	Tables	Page
(12)	The effect of different sources of nutrient solution and vermicompost rate on chemical characteristics of tomato fruits	93
(13)	The effect of different sources of nutrient solution and Vermicompost rate on N ,P & K % of tomato leaves	95
(14)	The effect of different sources of nutrient solution and vermicompost rate on Ca & Mg % of tomato leaves	98
(15)	The effect of different sources of nutrient solution and vermicompost rate on the heavy metals of tomato fruits	100
(16)	The effect of different sources of nutrient solution and vermicompost rate on vegetative and yield characteristics of strawberry.	106
(17)	The effect of different sources of nutrient solution and vermicompost rate on chemical quality properties of strawberry	108
(18)	The effect of different sources of nutrient solution and vermicompost rate on chemical quality properties of strawberry fruits	110
(19)	The effect of different sources of nutrient solution and vermicompost rate on N, P and K % of strawberry leaves	114
(20)	The effect of different sources of nutrient solution and vermicompost rate on Ca and Mg % of strawberry leaves.	117

No.	Tables	Page
(21)	The effect of different sources of nutrient solution and vermicompost rate on micro elements of strawberry leaves	119
(22)	The effect of different sources of nutrient solution and vermicompost rate on heavy metals of strawberry fruits	123
(23)	The effect of different sources of nutrient solution and vermicompost rate on yield of molokhia	126
(24)	The effect of different sources of nutrient solution and vermicompost rate on physical properties of molokhia.	130
(25)	The effect of different sources of nutrient solution and Vermicompost rate on macro elements of molokhia	132
(26)	The effect of different sources of nutrient solution and vermicompost rate on Ca & Mg % of molokhyia	134
(27)	The effect of different sources of nutrient solution and vermicompost rate on micro element of molokhia	138
(28)	The effect of different sources of nutrient solution and vermicompost rate on heavy metal of molokhia	141
(29)	The effect of different sources of nutrient solution and vermicompost rate on yield of spinach	143

No.	Tables	Page
(30)	The effect of different sources of nutrient solution and vermicompost rate on physical properties of spinach	146
(31)	The effect of different sources of nutrient solution and vermicompost rate on macro elements of spinach	148
(32)	The effect of different sources of nutrient solution and vermicompost rate on Ca & Mg % of spinach	151
(33)	The effect of different sources of nutrient solution and vermicompost rate on micro elements of spinach.	154
(34)	The effect of different sources of nutrient solution and vermicompost rate on heavy metal of spinach	156