THE USE OF MODERN TECHNIQUES IN THE ENGINEERING AND MANAGEMENT OF FISH FARMS

BY

AMR ELSAYED AHMED SAID IBRAHIM

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Agriculture (Agricultural Engineering)

Agricultural Engineering Department Faculty of Agriculture Zagazig University 2021

ABSTRACT

This study was carried out in central laboratory for aquaculture research (2017). Two experiments were conducted. The first experiment was aeration system was conducted to determine the best levels of oxygen supply on growth performance and oxidation status of Nile tilapia (*Oreochromis nilollcus*), Common carp (*Cyprinus carpio*) and Grey mullet (*Mugil cephalus*) fingerlings stocked at (85%, 10% and 5%), respectively; total of fingerlings with initial weight of weighting (10) g/fish were reared in tanks and supplied with normal water with air pumping and filtration system applied throughout the experiment with 2 replicates reared in 16 tanks made of fiber glass to evaluate the effect of perforated pipe location 0 and 100 cm from the bottom of tank , distance between holes 10, 20 cm, air pressure levels (P) 0.2 and 0.4 bar on water quality , growth rate of fish and net profit.

The obtained results revealed that the perforated pipe location of 100 cm with distance between holes of 10 cm and air pressure (P) of 0.4 bar gave the highest average of water quality such as pH (8.18 ± 2.48 , $7.97\pm.11$ and $8.23\pm.41$ mg/l), dissolved oxygen (8.38 ± 2.54 , $7.74\pm.11$ and $7.15\pm.35$ mg/l), water temp ($27 \text{ C}^{\circ} \pm 8.21$), ammonia ($0.28\pm.08, 0.29\pm.002$ and $0.35\pm.017$ mg/l), salinity ($0.18\pm.009$ mg/l), total hardness (170.9 ± 51.97), alkalinity (180.7 ± 54.95 mg/l), The highest average of growth rate values; final body weight (74.9 ± 22.77 , 77.4 ± 1.16 and 71.9 ± 3.59 g), final body length (19.2 ± 5.83 , $18.2\pm.27$ and 16.4 ± 0.32 cm), final body weight gain (5 ± 0.20 , 4.4 ± 0.06 and 4.6 ± 0.09 g), final condition factor (1.36 ± 0.05 ,

1.38±0.23 and 2.61±0.26g/cm3) and final feed conversion ratio $(1.56\pm0.47, 1.62\pm0.02 \text{ and} 1.68 \pm 0.03 \text{ g/fish})$, Final Specific growth rate (SGR %) were (1.93±0.58, 1.68±0.02 and 2.0 $\pm 0.04\%$) and final survival rate (%) were (91.8 ± 2.9 , 88.9 ± 2.6 and 90.2 ± 1.2) for Nile tilapia (*Oreochromis niloticus*), Grey mullet (Mugil cephalus) and Common carp (Cyprinus carpio) and distances between holes of 10 cm and pressure levels of 0.4 bar respectively. The obtained results in the first experiment revealed that total feed intake were 7.63, 7.88 and 5.34 kg/m³ and 7.93, 7.90 and 5.68 kg/m³ for tilapia; common carp and mullet respectively at pumping air pressure (0.2 and 0.4) bar with significant differences among the pipe location of (100cm) and air pressure tested. Compared with the control result were 4.37, 5.89 and 4.82 kg/m³. total feed cost of reared fish in water tank were 57.22, 59.1 and 40.05 LE/ kg/m³ and 59.47, 59.25 and 42.6 LE/ kg/m³ for tilapia; common carp and mullet respectively at pumping air pressure (0.2 and 0.4) bar with significant differences among the pipe location of (100cm) and air pressure tested. Compared with the control result were 32.77, 44.17 and 36.15 LE/ kg/m³. The second experiment was conducted to examine the effect of using magnetized water on productivity of fish. A total of 350 fishes with different density of (12, 25 and 50 fish/m³) for Tilapia and Common carp fingerlings weighting (10) g were randomly allotted into two groups each one has 2 replicates reared in 12 tanks, the first group provided normal water, mean while the fish in the second group were reared in magnetized water (obtained from water magnetizer that fixed at the main water source) the physical and chemical properties of water were determined using a pH meter, ion chrome atography.

Growth performance parameters were evaluated after two weeks compared with normal water (control). The magnetized water was more (P< 0.05) alkaline and had greater (P < 0.05) concentrations of total hardness. The obtained results in the second experiment revealed that the fish groups reared at low density of $(12 \text{ fish }/\text{m}^3)$ and treated with magnetic water recorded the highest water quality such as dissolved oxygen i.e., 8.70±.34 and 7.9±0.3 mg/l, pH 8.1±0.28 and 7.20±0.15 mg/l, water temp 28.7±1.14 C, ammonia, 0.11±0.003 and 0.11±0.004 mg/l, alkalinity146±5.84 and 149±5.66 mg/l and total hardness, 160 ± 3.20 and 164 ± 2.46 mg/l and the highest growth rate values such as final live body weight 93.25 ± 3.73 and $124.9\pm4.75g$; body length were 16.3±.65 and 18.6±.70 cm; condition factor (K) were $2.99\pm.10$ and $2.64\pm.05$ g/cm³; feed conversion ratio (FcR) 1.49±.05 and 1.49±.05 g/fish; specific growth rate 31.66±1.10 and 31.66±.69 g/fish; relative growth rate (RGR) 25.9 ± 1.03 and $25.83\pm.98$ g/fish; specific growth rate (SGR) 31.66±1.10 and 31.66±.69; final survival rate (%) 91.0 and 89.0% for tilapia and common carp, respectively.

CONTENTS

1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Aquaculture	4
2.2. Water Systems	5
2.3. Shape of fish tanks	7
2.4. Aeration tank	13
2.5. Aeration devices	16
2.6. Magnetic water	19
2.7. Total yield	28
2.8. Cost production	28
3. MATERIALS AND METHODS	30
3.1. Materials	30
3.2 Methods	36
3.2.2. Measurements	38
3.2.3. Cost production	40
3.2.4. Statistical Analysis	41
4. RESULTS AND DISCUSSION	42
4.1. The first experiment	42
4.2. The second experiment	97
5. SUMMARY AND CONCLUSION	134
6. REFERENCES	141
ARABIC SUMMARY	

LIST OF TABLES

No.	Name of table	Page
1	Ingredients and chemical analysis of experimental	
	diet	34
2	Effect of different level of air pressure, perforated	
	pipe location and distances between holes on	
	Average of water quality parameters for	
	Oreochromis niloticus, Mugil cephalus and	
	Cyprinus carpio reared in Tanks through	
	experimental period (14weeks)	49
3	Effect of different level of air pressure, perforated	
	pipe location and distances between holes on Body	
	weight (BW) of Oreochromis niloticus, Mugil	
	cephalus and Cyprinus carpio reared in Tanks	
	through experimental period (14 w)	52
4	Effect of different level of air pressure, perforated	
	pipe location and distances between holes on Body	
	Length (BL) for Oreochromis niloticus, Mugil	
	cephalus and Cyprinus carpio reared in Tanks	
_	through experimental period (14 weeks)	58
5	Effect of different level of air pressure, perforated	
	pipe location and distances between holes on Body	
	weight gain (BWG) for Oreochromis niloticus,	
	Mugil cephalus and Cyprinus carpio reared in	
	Tanks through experimental period (14 weeks)	64
6	Effect of different level of air pressure, perforated	
	pipe location and distances between holes on	
	Condition Factor (K) for Oreochromis niloticus,	<u>(</u>)
	Mugil cephalus and Cyprinus carpio reared in	69

Tanks through experimental period (14 weeks)......

7 Effect of different level of air pressure, perforated pipe location and distances between holes on Feed conversion ratio (FCR) for *Oreochromis niloticus*, *Mugil cephalus* and *Cyprinus carpio* reared in Tanks through experimental period (14 weeks)......

75

81

- 8 Effect of different level of air pressure, perforated pipe location and distances between holes on the specific growth rate (SGR %) for *Oreochromis niloticus, Mugil cephalus* and *Cyprinus carpio* reared in Tanks through experimental period (14 weeks).....
- 9 Effect of different level of air pressure, perforated pipe location and distances between holes on Survival rate (%) for *Oreochromis niloticus, Cyprinus carpio* and *Mugil cephalus* and reared in Tanks through experimental period (14 weeks)...... 86
- Effect of fish density, water treatments and their interaction on water quality of Nile tilapia and common carp fish through experimental period..... 92
- Effect of fish density, water treatments and their interaction On Live Body weight Of Nile tilapia and common carp through experimental period...94
- 13 Effect of fish density, water treatments and their 102

III

interaction On Condition Factor (K) Of Nile tilapia and common carp through experimental period...

14 Effect of fish density, water treatments and their interaction on Feed Conversion ratio (FcR) of Nile tilapia and common carp through experimental period..... 105 15 Effect of fish density, water treatments and their interaction on Specific growth Rate of Nile tilapia 109 and common carp through experimental period..... 16 Effect of fish density, water treatments and their interaction on Relative growth rate RGR Of Nile tilapia and common carp through experimental 114 period..... Effect of fish density, water treatments and their 17 interaction on survival %, ratio of Nile tilapia and common carp through experimental period..... 117 18 Effect of fish density, water treatments and their interaction on Specific growth Rate of Nile tilapia and common carp through experimental period 120 Effect of fish density, water treatments and their 19 interaction on Relative growth rate RGR of Nile tilapia and common carp through experimental period..... 124 20 Effect of fish density, water treatments and their interaction on survival %, ratio of Nile tilapia and common carp through experimental period..... 127

21	The net production for Oreochromis niloticus,	
	Cyprinus carpio reared in Tanks through	
	experimental period	130
22	Economic visibility for Oreochromis niloticus,	
	Cyprinus carpio reared in Tanks through	
	experimental period	133

LIST OF FIGURES

No.	Name of Figure	Page
1	Experimental unit design	32
2	Water quality parameters at different level of air pressure, perforated pipe location and distances between holes during experimental period	50
3	Water quality parameters at different level of air pressure, perforated pipe location and distances between holes during experimental period	50
4	Body weight of tilapia, common carp and mullet at different levels of air pressure, perforated pipe location and distances between holes during experimental period	53
5	Body length of tilapia, common carp and mullet at different levels of air pressure , perforated pipe location and distances between holes during experimental period	59
6	Body weight gain of tilapia, common carp and mullet at different levels of air pressure, perforated pipe location and distances between holes during experimental period	65
7	Condition factor of tilapia, common carp and mullet at different levels of air pressure , perforated pipe location and distances between holes during experimental period	70

Feed conversion ratio of tilapia, common carp and	
mullet at different levels of air pressure ,	
perforated pipe location and distances between holes	
during experimental period	76
The specific growth rate of tilapia, common carp and mullet at different levels of air pressure, perforated pipe location and distances between holes during experimental period	82
	04
mullet at different levels of air pressure, perforated pipe location and distances between holes during	
experimental period	87
Water quality parameters for Nile tilapia common carp as affected by water treatments and stocking	
density.	103
Water quality parameters for Nile tilapia and common carp as affected by water treatments and stocking density	103
	103
affected by fish density, water treatments and their	106
	100
affected by fish density, water treatments and their	110
	110
affected by fish density, water treatments and their	115
	 mullet at different levels of air pressure , perforated pipe location and distances between holes during experimental period The specific growth rate of tilapia, common carp and mullet at different levels of air pressure, perforated pipe location and distances between holes during experimental period The survival rate (%) of tilapia, common carp and mullet at different levels of air pressure, perforated pipe location and distances between holes during experimental period Water quality parameters for Nile tilapia common carp as affected by water treatments and stocking density. Water quality parameters for Nile tilapia and common carp as affected by water treatments and stocking density

VIII

l common
ments and
118
nmon carp
s and their
121
nmon carp
s and their
125
on carp as
and their
128