

Zagazig University Faculty of Vet. Medicine Dept. of Pharmacology

EFFICACY OF CHITOSAN-PROPOLIS NANOCOMPOSITE ON BACTERIAL INFECTION IN RABBITS

Walaa Abdallah Mohammed El-Sayed B.V.Sc., Zagazig University (2011)

M.V.Sc., Zagazig University (2015)

Under Supervision of

Prof. Dr.

Prof. Dr.

Hosny Abd El-Fadil Ibrahim

Sawsan M.A. El-Sheikh

Prof. of Pharmacology Faculty of Vet. Med. Zagazig University

Prof. of Pharmacology Dean of Faculty of Vet. Med. Zagazig University

Prof. Dr.

Abd-Elalim F. Abd-Elalim

Prof. of Pharmacology, and Dean of Faculty of Vet. Med., Animal Health Research Institute Zagazig University

Chief Researcher of Pharmacology

Dr.

Elham Ahmed Mobarez

(A.H.R.I.) Dokki

A Thesis

Submitted to Zagazig University

For The Degree of Ph.D. of Vet. Medical Sciences (Pharmacology) Department of Pharmacology

2020

LIST OF CONTENTS

No.	Subject	Page No.
1	Introduction	1
2	Aim of The Work	4
3	Review of Literature	5
	Materials and Methods	31
4	Material	31
	Methods	42
5	Result	55
6	Discussion	105
7	Summary	119
8	Conclusion	130
9	References	131
10	VITA	
11	Arabic Summary	۷ _ ۱

LIST OF ABBREVIATIONS

Abbreviation	Expression
ALP	Alkaline Phosphatase.
ALT	Alanine Aminotransferase.
AST	Aspartate Aminotransferase.
AvrA	A virulence gene A
bp	Base pairs
BUN	Blood urea nitrogen
CAT	Catalase
CFU	Colony forming unit.
CNPs	Chitosan nonoparticles
CPNP	Chitosan propolis nanocomposite
DDS	Drug delivery system
DLS	Dynamic light scattering.
DNA	Deoxyribonucleic acid.
E.coli	Escherichia coli.
EPEC	Enteropathogenic E. coli.
FDA	Food and Drug Administration
FT-IR	Fourier transmittance Infrared
GPx	Glutathione peroxidase.
GR	Glutathione reductase
HPLC	High Performance Liquid
	Chromatography.

Abbreviation	Expression
HRTEM	High-resolution transmission electron
HRTEM	microscopy.
invA	Invasive gene A
MDA	Malondialdehyde.
MEM	Minimal essential medium.
MIC	Minimum inhibitory concentration
mV	millivolt
nm	nanometer
NPs	Nanoparticles.
PdI	polydispersity index
ROS	Reactive oxygen species
rpm	Round per minute.
S. aureus	Staphylococcus aureus.
S. typhimurium	Salmonella typhimurium.
SOD	Superoxide dismutase.
SopB	Salmonella outer protein B
SPSS	Statistical and Package for Social
stn	Salmonella enterotoxin
TEM	Transmission electron microscope.
TPP	Tripolyphosphate.
ZS	Zeta sizer.

LIST OF TABLES

No.	Title	Page
1	The first experimental design.	47
2	The second experimental design.	48
3	Cell viability % after chitosan nanoparticle and chitosan-propolis nanocomposite inoculation on vero cell.	62
4	<i>Salmonella</i> identification, serotyping and its virulence and resistance genes detection.	64
5	MIC of chitosan-propolis nanocomposite and chitosan nanoparticle against <i>S. aureus</i> , <i>E. coli</i> and <i>S. typhimurium</i> .	65
6	Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan-propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on Salmonella typhimurium mortality rate (n=15).	70
7	Detection of <i>S. typhimurium</i> from rabbits' tissues of different experimental groups.	72
8	Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>S. typhimurium</i> experimentally infected rabbits.	77

 Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/antioxidant status in <i>S. typhimurium</i> experimentally infected rabbits. Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 			
 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/antioxidant status in <i>S. typhimurium</i> experimentally infected rabbits. Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. 13 Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 	0	Effects of oral administration of apramycin (10	
 9 nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/antioxidant status in <i>S. typhimurium</i> experimentally infected rabbits. Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). 11 Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. 13 Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. 13 Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan	
 propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/antioxidant status in <i>S. typhimurium</i> experimentally infected rabbits. Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		nanoparticles (100 mg/kg b.wt) and chitosan	
 successive days on oxidant/antioxidant status in <i>S. typhimurium</i> experimentally infected rabbits. Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 	9	propolis nanocomposite (100 mg/kg b.wt) for 8	83
S. typhimurium experimentally infected rabbits.Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15).8911Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups.9121Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits.9613Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits.102		successive days on oxidant/antioxidant status in	
 Effect of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		S. typhimurium experimentally infected rabbits.	
 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		Effect of oral administration of apramycin (10	
 10 nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15). 11 Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. P1 Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. 13 Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan	
propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on <i>E. coli</i> mortality rate (n=15).9111Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups.9121Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical 	10	nanoparticles (100 mg/kg b.wt) and chitosan	89
 successive days on <i>E. coli</i> mortality rate (n=15). Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups. Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		propolis nanocomposite (100 mg/kg b.wt) for 8	
11Detection of <i>E. coli</i> from rabbits' tissues of different experimental groups.91Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits.9613Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt) and chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits102		successive days on <i>E. coli</i> mortality rate (n=15).	
11different experimental groups.91Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits.9613Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt), chitosan propolis nanocomposite (100 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits102	11	Detection of E. coli from rabbits' tissues of	01
 Effects of oral administration of of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 	11	different experimental groups.	91
 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		Effects of oral administration of of apramycin (10	
 nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan	
 propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 		nanoparticles (100 mg/kg b.wt) and chitosan	
 successive days on some serum biochemical parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits. 	12	propolis nanocomposite (100 mg/kg b.wt) for 8	96
parameters in <i>E. coli</i> experimentally infected rabbits. Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits		successive days on some serum biochemical	
Image: rabbits.Image: rabbits.Image: transform trans		parameters in E. coli experimentally infected	
Image: 13Effects of oral administration of apramycin (10 mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in $E. coli$ experimentally infected rabbits102		rabbits.	
13 $mg/kg b.wt$), propolis (50 mg/kg b.wt), chitosan nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in <i>E. coli</i> experimentally infected rabbits		Effects of oral administration of apramycin (10	
13 nanoparticles (100 mg/kg b.wt) and chitosan propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in E_{c} coli experimentally infected rabbits	13	mg/kg b.wt), propolis (50 mg/kg b.wt), chitosan	
13 propolis nanocomposite (100 mg/kg b.wt) for 8 successive days on oxidant/ antioxidant status in E_{coli} experimentally infected rabbits		nanoparticles (100 mg/kg b.wt) and chitosan	100
successive days on oxidant/ antioxidant status in E_{c} coli experimentally infected rabbits		propolis nanocomposite (100 mg/kg b.wt) for 8	102
<i>E. coli</i> experimentally infected rabbits		successive days on oxidant/ antioxidant status in	
Li con enperimentari j'intected facents		E. coli experimentally infected rabbits	

LIST OF FIGURES

No.	Title	Page
1	HRTEM of chitosan nanoparticle showed nanosphere shape, no aggregation and Size 26.15nm. (Central Lab. in NRC).	56
2	HRTEM of chitosan-propolis nanocomposite showed nanosphere shape, no aggregation and size 29.41 nm. (Central Lab. in NRC).	56
3	FTIR of propolis, chitosan and propolis-chitosan nanocomposite (Central Lab. in NRC).	58
4	Zeta potential chitosan (A) and chitosan-propolis nanocomposite (B) (Central Lab. in NRC).	59
5	Negative control Vero cells 72 hr. post inoculation (A), chitosan nanoparticle no effect to cells (B) and chitosan-propolis nanocomposite (C) after 24 hr and 72hr.	61
6	Cell viability % after chitosan nanoparticle inoculation on the cell culture.	63
7	Cell viability % after chitosan-propolis nanocomposite inoculation on the cell culture.	63
8	<i>Salmonella</i> identification, serotyping and its virulence and resistance genes detection.	64
9	Liver of infected rabbits was congested and presented necrotic areas due to <i>S. typhimurium</i> infection.	68

No.	Title	Page	
	Small intestine of infected rabbits was inflammed		
10	and filled with watery diarrhea due to S .	68	
	typhimurium infection.		
	Large intestine of infected rabbits was congested		
11	and filled with feces due to S. typhimurium	69	
	infection.		
	Effect of S. typhimurium and different		
12	medications on total mortality rate % at the end	70	
	of experiment.		
12	Effect of different medications on S. typhimurium	72	
15	re-isolation %.	13	
14	Salmonella growth on XLD media showed	72	
14	typical colonies of red color with black center.	13	
15	Salmonella growth on Hekton media showed	74	
13	typical colonies of dark green color.	/-	
	Salmonella growth on TSI showed red slant and		
16	yellow buttom with blackening of the agar,	74	
10	Urea showed -ve urease, LI showed turbidity	/ 4	
	and purple color and Indole -ve.		
17	Effect of S. typhimurium and different	78	
1/	medications on ALT of all groups	10	
18	Effect of S. typhimurium and different	78	
10	medications on AST of all groups.	70	
10	Effect of S. typhimurium and different	70	
17	medications on ALP of all groups.	17	

No.	Title	Page	
20	Effect of S. typhimurium and different	70	
20	medications on CK-MB of all groups.	19	
-01	Effect of S. typhimurium and different	00	
41	medications on creatinine of all groups	90	
22	Effect of S. typhimurium and different	90	
22	medications on urea of all groups.	ð U	
22	Effect of S. typhimurium and different	94	
23	medications on SOD of all groups.	84	
24	Effect of S. typhimurium and different	94	
24	medications on GPx of all groups.	84	
25	Effect of S. typhimurium and different	95	
25	medications on CAT of all groups.	60	
26	Effect of S. typhimurium and different	95	
20	medications on MDA of all groups.	03	
27	Lung of infected rabbits was congested and	87	
21	inflamed due to E. coli infection.	07	
28	Heart of infected rabbits was congested and	87	
20	inflamed due to E. coli infection.	07	
20	Intestine of infected rabbits showed severe	88	
49	inflammation due to E. coli infection.	00	
30	Effect of <i>E. coli</i> and different medication on total	80	
50	mortality rate %.	07	
31	Effect of different medications on E. coli re-	02	
	isolation %.	74	

No.	Title	Page
32	<i>E. coli</i> culture on Macconkey agar media showed pink colonies.	93
33	<i>E. coli</i> culture on TSI showed yellow slant and buttom, Urea showed urease –ve and Simmon's citrate showed green coloration with no bacterial growth.	93
34	Effect of <i>E. coli</i> and different medications on ALT of all groups	97
35	Effect of <i>E. coli</i> and different medications on AST of all groups.	97
36	Effect of <i>E. coli</i> and different medications on ALP of all groups.	98
37	Effect of <i>E. coli</i> and different medications on CK-MB of all groups.	98
38	Effect of <i>E. coli</i> and different medications on Creatinine of all groups.	99
39	Effect of <i>E. coli</i> and different medications on Urea of all groups.	99
40	Effect of <i>E. coli</i> and different medications on SOD of all groups.	103
41	Effect of <i>E. coli</i> and different medications on GPx of all groups.	103
42	Effect of <i>E. coli</i> and different medications on CAT of all groups.	104
43	Effect of <i>E. coli</i> and different medications on MDA of all groups.	104

SUMMARY

Gastrointestinal diseases and particularly the diarrheic syndrome as a result of either colibacillosis or salmonellosis are the principal problems causing mortality in industrial fattening rabbit farms.

The current study was planned to assess the application of nanotechnology in the veterinary field and as a result of the emergence of multiple antibiotic resistance due to over and misuse of antibiotics, our study planned to evaluate the antibacterial activity of natural-based nanoparticles (chitosanpropolis-nanocomposite) against *S. typhimurium* and *E. coli* infections and their adverse effects as oxidative stress and hepato-nephrotoxicity in rabbits.

In vitro studies:

The smallest size, spherical in shape and stable nano particles were obtained through the characterization of chitosan nanoparticle and nanocomposite by FTIR fingerprint spectroscopy, zeta potential and TEM microscopies. Also, safety of these particles was achieved through the culture on Vero cell line. Nanomedicine against three pathogens in veterinary medicine could be approved *in vitro* by MIC demonstrating the applicability of chitosan nanoparticles and chitosan-propolis nanocomposite as a promising alternative antibacterial.

The results of sensitivity test showed that apramycin had more potent inhibitory effect on *S. typhimurium* and *E. coli* than other antibiotics tested.

In vivo studies:

The first experimental protocol

In our study, A total number of ninety New Zealand rabbits, with average (1.5-2 kg) were randomly allocated into 6 equal groups (each of 15 rabbit) which were fasted 12h before bacterial inoculation as the following:

- Group 1 (G1): were orally administered 5 mL sterilized saline (control group).
- **Group 2 (G2):** were orally administered 5 ml suspension of *S. typhimurium* (5×10^9 CFU) (infected-non treated group).
- Group 3 (G3): *S. typhimurium* infected rabbits were orally given 10 mg apramycin/kg b.wt/daily for 8 successive days (infected-apramycin-treated group).
- Group 4 (G4): *S. typhimurium* infected rabbits were orally given 50 mg propolis/kg b.wt for 8 successive days (infected-propolis-treated group).

- Group 5 (G5): *S. typhimurium* infected rabbits were orally given 100 mg CNPs/kg b.wt for 8 successive days (infected-CNPs-treated group).
- Group 6 (G6): S. typhimurium infected rabbits were orally given 100 mg CPNP/kg b.wt for 8 successive days (infected-CPNP-treated group).

The second experimental protocol

A total number of ninety New Zealand rabbits, with average body weight (1.5-2 kg) were randomly allocated into 6 equal groups (each of 15 rabbit) which were fasted 12h before bacterial inoculation as the following:

- Group 1 (G1): were orally administered 5 mL sterilized saline (control group).
- **Group 2 (G2):** were orally administered 5 ml suspension of *E*. *coli* serotype (O26) $(3 \times 10^7 \text{ CFU})$ (infected-non treated group).
- Group 3 (G3): *E. coli* infected rabbits were orally given 10 mg apramycin/kg b.wt/daily (infected-apramycin-treated group).
- Group 4 (G4): *E. coli* infected rabbits were orally given 50 mg propolis/kg b.wt (infected-propolis-treated group).

Group 5 (G5): *E. coli* infected rabbits were orally given 100 mg CNPs/kg b.wt (infected-CNPs-treated group).

Group 6 (G6): *E. coli* infected rabbits were orally given 100 mg CPNP/kg b.wt (infected-CPNP-treated group).

Clinical symptoms, post mortem changes and mortality rate of rabbits in response to *S. typhimurium* infection and administration of different treatments

Rabbits infected with *S. typhimurium* suffered from lethargy, off- food, weight loss, diarrhea with or without mucus and fever after 48hr post inoculation. Post mortem examination of rabbits showed a congestion of small intestine which appeared flaccid and filled with a watery diarrhea, congestion of large intestine and filled with feces, congested and friable liver with necrotic foci and enlarged spleen.

Rabbits treated with apramycin (G3), propolis (G4) and CNPs (G5) revealed less serious clinical signs and post mortem lesions than did group 2. Rabbits in infected CPNP-treated (G6) were nearly healthy with much less severe clinical signs and post mortem lesions.

During the experimental period, 5 rabbits in the infected non treated group, 2 rabbits in the infected- apramycin or CNPs treated groups, 3 rabbits in the infected propolis-treated group and 1 rabbit in the infected CPNP-treated group were died.

Effect of oral administration of different treatments on Salmonella typhimurium re-isolation rates

Salmonella was cultured from all examined organs of non-infected and non-treated animals showed no bacterial isolation compared to the infected group which showed 100% salmonella re-isolation from various organs. Medication with apramycin significantly reduced the frequency of isolation of salmonella to 60% on 6th day and 0% on 10th day of the experiment. In addition, treatment with propolis reduced the isolation to 80% on 6th day and 20% on 10th day of the experiment. Treatment with chitosan nanoparticles significantly reduced the bacterial isolation to 60% on 6th day and 0% on 10th day of the experiment compared to chitosan-propolis nanocomposite treated group which showed 20% on 6th day and no bacterial growth on 10th day of the experiment considering it the best anti salmonella drug.

Effects of oral administration of different treatments on some biochemical parameters in *S. typhimurium* experimentally infected rabbits

On the 1st day post-treatment, a significant (p < 0.05) increase in the levels of serum ALT, AST, ALP, CK-MB and creatinine were reported in the infected non-treated group compared to control group. Meanwhile, the oral therapy of

infected rabbits with apramycin for 8 days significantly (p < 0.05) decreased the serum levels of ALT, AST, ALP and CK-MB compared to the infected-non treated group. The oral treatment of infected rabbits with propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) decreased the levels of serum ALT, AST, ALP, CK-MB and creatinine compared to the infected-non treated group. The oral treatment of infected rabbits with propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) decreased the levels of serum ALT, AST, ALP, CK-MB and creatinine compared to the infected rabbits with propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) decreased the levels of serum ALT, AST, ALP and creatinine compared with the infected –apramycin treated group. The oral treatment of infected rabbits with CPNP for 8 days not only decreased the levels of serum ALT, AST, ALP, CK-MB and creatinine significantly (p < 0.05) in comparing with the other treated groups but also, the levels returned to relative normal levels.

Effects of oral administration of different treatments on oxidant/antioxidant status in *S. typhimurium* experimentally infected rabbits

S. typhimurium infection revealed a significant (p < 0.05) decrease in the levels of serum SOD, GSH-Px and CAT and a significant increase of serum MDA were reported in the infected non-treated group in comparing with control group on the 1st day post-treatment. Meanwhile, oral treatment of

infected rabbits with apramycin, propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) increased the levels of serum SOD, GSH-Px and CAT and significantly reduced serum MDA compared to infected group. The oral treatment of infected rabbits with propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) increased the levels of serum SOD, GSH-Px and CAT and significantly decreased serum MDA compared to infected-apramycin treated group. The oral treatment of infected rabbits with CPNP for 8 days not only improved the oxidant/antioxidant status significantly (p < 0.05) in comparing with other treated groups but also, the status returned to relative normal levels.

The second experiment:

Clinical symptoms, post mortem changes and mortality rate of rabbits in response to *E. coli* infection and administration of different treatments

Rabbits infected with *E. coli* suffered from depression, lack of appetite, diarrhea, weight loss, congestion of mucous membrane and respiratory manifestation 24 hrs post inoculation. Post mortem examination of rabbits showed pericarditis, myocarditis, congestion of the lung and intestinal inflammation and ulceration which filled with a watery diarrhea. However, rabbits treated with apramycin (G3), propolis (G4) and CNPs (G5) revealed less serious clinical signs and post mortem lesions than did infected group. Rabbits in infected CPNP-treated (G6) were nearly healthy with much less severe clinical signs and post mortem lesions.

Mortality rates were recorded throughout the experiment in each group and calculated as a percent. High mortality rate by *E. coli* infection (26.67%) occurred in non-treated rabbits. Medication with apramycin reduced the mortality to 0% compared to 13.33% for propolis-treated and 6.67% for chitosan nanoparticles-treated groups and 0% for chitosan propolis nanocomposite treatment.

Effect of oral administration different treatments on *E. coli* re-isolation rates

E. coli was cultured from all examined organs (liver, heart, lung, spleen and kidney) of non-infected and non-treated animals which showed no bacterial isolation compared to the infected group (G2) which showed 100%. Medication with apramycin (G3) significantly reduced the frequency of isolation of *E. coli* to 40% on 6^{th} day and 0% on 10^{th} day of the experiment.

In addition, treatment with propolis reduced the reisolation to 60% on 6^{th} day and 20% on 10^{th} day of the experiment. While, treatment with chitosan nanoparticles reduced the bacterial re-isolation to 60% on 6^{th} day and 0% on 10^{th} day of the experiment. Treatment with chitosan-propolis nanocomposite treated group showed no bacterial growth at all.

Effects of oral administration of different treatments on some biochemical parameters in *E. coli* experimentally infected rabbits

On the 1st day post-treatment, a significant (p < 0.05) increase in the levels of serum ALT, AST, ALP, CK-MB and creatinine were reported in the infected non-treated group in comparing with control group.

Meanwhile, the oral therapy of infected rabbits with apramycin for 8 days significantly (p < 0.05) decreased the serum levels of ALT, AST, ALP and CK-MB compared to the infected-non treated group.

The oral treatment of infected rabbits with propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) decreased the levels of serum ALT, AST, ALP, CK-MB and creatinine compared with the infected-non treated group.

The oral treatment of infected rabbits with CPNP for 8 days not only reduced the levels of serum ALT, AST, ALP, CK-MB and creatinine significantly (p < 0.05) in comparing with the other treated groups but also, the levels returned to nearly the normal levels.

Effects of oral administration of different treatments on oxidant/antioxidant status in *E-coli* experimentally infected rabbits

E-coli infection revealed a significant (p < 0.05) reduction in the levels of serum SOD, GSH-Px and CAT and a significant elevation of serum MDA in the infected non-treated group compared to control group on the 1st day post-treatment.

Meanwhile, the oral treatment of infected rabbits with apramycin, propolis, CNPs, or CPNP for 8 days significantly (p < 0.05) increased the levels of serum SOD, GSH-Px and CAT and significantly decreased serum MDA compared to infected group.

The oral treatment of infected rabbits with CNPs, or CPNP for 8 days significantly (p < 0.05) increased the levels of serum SOD, GSH-Px and CAT and significantly decreased serum MDA compared to infected-apramycin treated group.

The oral treatment of infected rabbits with CPNP for 8 days not only improved the oxidant/antioxidant status significantly (p < 0.05) in comparing with other treated groups but also, the status returned to nearly the normal levels.

Chitosan-propolis nanocomposite showed greater efficacy against adverse effects of *E. coli* on oxidative stress and hepato-cardio-nephrotoxicity than *S. typhimurium*.